A hybrid manufacturing system integrates computer numerical controlled (CNC) machining process and layered deposition process and achieves the benefits of both processes. An integrated process planning framework, which includes every module of the hybrid manufacturing process is critical for making the building of functional parts feasible and reliable. In this paper, the hybrid manufacturing system is introduced and the integrated process planning framework, which aims to automate the hybrid manufacturing is investigated. Critical components of the process planning, including decomposition of the computer-aided design (CAD) model, improvement of the toolpath generation pattern, and collision detection algorithms, are discussed. The interfacing and integrating process between deposition and surface finish machining is also studied. The goal of integrated process planning is to realize the automatic hybrid manufacturing process without much human interference. Experiments are implemented to validate the feasibility and reliability of the integrated process planning framework.

1.
Laeng
,
J.
,
Stewart
,
J. G.
, and
Liou
,
F. W.
, 2000, “
Laser Metal Forming Processes for Rapid Prototyping—A Review
,”
Int. J. Prod. Res.
0020-7543,
38
(
16
), pp.
3973
3996
.
2.
Koch
,
J. L.
, and
Mazumder
,
J. M.
, 1993, “
Rapid Prototyping by Laser Cladding
,”
The International Society for Optical Engineering
,
2306
, pp.
556
562
.
3.
Dutta
,
D.
,
Prinz
,
F. B.
,
Rosen
,
D.
, and
Weiss
,
L.
, 2001, “
Layered Manufacturing: Current Status and Future Trends
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
, pp.
60
71
.
4.
Liou
,
F.
, and
Ruan
,
J.
, 2002, “
A Hybrid Metal Deposition and Removal System for Rapid Manufacturing
,”
International Conference on Metal Powder Deposition for Rapid Manufacturing
, San Antonio.
7.
Ruan
,
J.
,
Eiamsa-ard
,
K.
,
Zhang
,
J.
, and
Liou
,
F. W.
, 2002, “
Automatic Process Planning of A Multi-Axis Hybrid Manufacturing System
,”
Proceedings of DETC’02
, Montreal, Canada, Sep. 29–Oct. 2.
8.
Kao
,
J.
, 1999, “
Process Planning for Additive/Subtractive Solid Freeform Fabrication Using Medial Axis Transform
,” Ph.D. thesis, Stanford University, CA.
9.
Singh
,
P.
, and
Dutta
,
D.
, 2001, “
Multi-Direction Slicing for Layered Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
, pp.
129
142
.
10.
Zhang
,
J.
,
Ruan
,
J.
, and
Liou
,
F. W.
, 2000, “
Process Planning for a Five-Axis Hybrid Rapid Manufacturing Process
,”
Proceedings of the 11th Annual Solid Freeform Fabrication Symposium
, Austin, TX, p.
243
.
11.
Pandey
,
P. M.
,
Reddy
,
N. V.
, and
Dhande
,
S. G.
, 2003, “
Slicing Procedures in Layered Manufacturing: A Review
,”
Rapid Prototyping J.
1355-2546,
9
(
5
), pp.
274
288
.
12.
Kumar
,
M.
, and
Choudhury
,
A. R.
, 2002, “
Adaptive Slicing With Cubic Path Approximation
,”
Rapid Prototyping J.
1355-2546,
8
(
4
), pp.
224
232
.
13.
Eiamsa-ard
,
K.
,
Liou
,
F. W.
,
Landers
,
R. G.
, and
Choset
,
H.
, 2003, “
Toward Automatic Process Planning of a Multi-Axis Hybrid Laser Aided Manufacturing System: Skeleton-Based Offset Edge Generation
,”
Proceedings of DETC’03
, Chicago, IL, Sep. 2–6.
14.
Liou
,
F. W.
,
Choi
,
J.
,
Landers
,
R. G.
,
Janardhan
,
V.
,
Balakrishnan
,
S. N.
, and
Agarwal
,
S.
, 2001, “
Research and Development of a Hybrid Rapid Manufacturing Process
,”
Solid Freeform Fabrication Symposium
, Austin, TX.
15.
Ruan
,
J.
,
Eiamsa-ard
,
K.
, and
Liou
,
F. W.
, 2005, “
Automatic Multi-axis Slicing Based on Centroidal Axis Computation
,”
Proceedings of DETC’05
, Long Beach, CA, Sep. 24–28.
16.
Culver
,
T.
,
Keyser
,
J.
, and
Manocha
,
D.
, 2004, “
Exact Computation of the Medial Axis of a Polyhedron
,”
Comput. Aided Geom. Des.
0167-8396,
21
, pp.
65
98
.
17.
Sampl
,
P.
, 2001, “
Medial Axis Construction in Three Dimensions and its Application to Mesh Generation
,”
Eng. Comput.
0263-4759,
17
, pp.
234
248
.
18.
O’Rourke
,
J.
, 1998,
Computational Geometry in C
, 2nd ed.,
Cambridge University Press
,
New York
.
19.
Ganovelli
,
F.
,
Dingliana
,
J.
, and
O’Sullivan
,
C.
, 2000, “
Buckettree: Improving Collision Detection Between Deformable Objects
,”
Proceedings of Spring Conference on Computer Graphics SCCG’00
, p.
129
.
20.
Larsson
,
T.
, and
Akenine-Moller
,
T.
, 2001, “
Collision Detection for Continuously Deforming Bodies
,”
Eurographics Conference 2001
, short presentation, pp.
325
333
.
21.
Ruan
,
J.
, and
Liou
,
F. W.
, 2003, “
Automatic Toolpath Generation for Multi-axis Surface Machining in a Hybrid Manufacturing System
,”
Proceedings of DETC’03
, Chicago, Il, Sep. 2–6.
22.
Kao
,
J.
, and
Prinz
,
F. B.
, 1998, “
Optimal Motion Planning for Deposition in Layered Manufacturing
,”
Proceedings of DETC’98
, Atlanta, GA, Sep. 13–16.
23.
Choi
,
B. K.
, and
Park
,
S. C.
, 1999, “
A Pair-Wise Offset Algorithm for 2D Point-Sequence Curve
,”
Comput.-Aided Des.
0010-4485,
31
(
12
), pp.
735
745
.
24.
Eiamsa-ard
,
K.
,
Liou
,
F. W.
,
Ren
,
L.
, and
Choset
,
H.
, 2006, “
Spiral-Like Path Planning Without Gap for Material Deposition Processes
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Sep. 10–13.
25.
Ren
,
L.
,
Ruan
,
J.
,
Eiamsa-ard
,
K.
, and
Liou
,
F.
, 2007, “
Adaptive Deposition Coverage Toolpath Planning for Metal Deposition Process
,”
Proceedings of DETC 2007
, Las Vegas, NV, Sep. 4–7.
26.
Choset
,
H.
, 2000, “
Coverage of Known Spaces: The Boustrophedon Cellular Decomposition
,”
Auton. Rob.
0929-5593,
9
(
3
), pp.
247
253
.
27.
Acar
,
E. U.
,
Choset
,
H.
,
Rizzi
,
A. A.
,
Atkar
,
P. N.
, and
Hull
,
D. M.
, 2002, “
Decompositions for Coverage Tasks
,”
Int. J. Robot. Res.
0278-3649,
21
(
4
), pp.
331
344
.
28.
Misra
,
D.
,
Sundararajan
,
V.
, and
Wright
,
P. K.
, 2005, “
Zig-Zag Tool Path Generation for Sculptured Surface Finishing
,”
DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, Vol.
67
, pp.
265
280
.
29.
Yao
,
Z.
, and
Gupta
,
S. K.
, 2004, “
Cutter Path Generation for 2.5D Milling by Combining Multiple Different Cutter Path Patterns
,”
Int. J. Prod. Res.
0020-7543,
42
(
11
), pp.
2141
2161
.
30.
Wang
,
H. C.
, and
Stori
,
J. A.
, “
A Metric-Based Approach to 2D Tool-Path Optimization for High-Speed Machining
,” ASME Paper No. IMECE2002-MED-33610.
31.
Held
,
M.
,
Lukas
,
G.
, and
Andor
,
L.
, 1994, “
Pocket Machining Based on Contour Parallel Tool Path Generation by Means of Proximity Maps
,”
Comput.-Aided Des.
0010-4485,
26
, pp.
189
203
.
32.
Choi
,
B. K.
, and
Kim
,
B. H.
, 1997, “
Die-Cavity Pocketing via Cutting Simulation
,”
Comput.-Aided Des.
0010-4485,
29
(
12
), pp.
837
846
.
33.
Held
,
M.
, 1991,
On the Computational Geometry of Pocket Machining
,
Springer-Verlag
,
Berlin, Heidelberg
.
You do not currently have access to this content.