The property of high frequency in micro-EDM (electrical discharge machining) causes the discharge states to vary much faster than in conventional EDM, and discharge states of micro-EDM have the characteristics of nonstationarity, nonlinearity, and internal coupling, all of this makes it very difficult to carry out stable control. Thus empirical mode decomposition is adopted to conduct the prediction of the discharge states obtained through multisensor data fusion and fuzzy logic in micro-EDM. Combined with the autoregressive (AR) model identification and linear prediction, the mathematical model for EDM discharge state prediction using empirical mode decomposition is established and the corresponding prediction method is presented. Experiments demonstrate that the new prediction method with short identification data is highly accurate and operates quickly. Even using short model identification data, the accuracy of empirical mode decomposition prediction can stably reach a correlation of 74%, which satisfies statistical expectations. Additionally, the new process can also effectively eliminate the lag of conventional prediction methods to improve the efficiency of micro-EDM, and it provides a good basis to enhance the stability of the control system.

1.
Zhou
,
M.
, 2005, “
The Methodology of Discharging-State Identification in Micro Electrical Discharging Machining (Micro EDM)
,” Ph.D. thesis, Dalian University of Technology, Dalian, China, in Chinese.
2.
Kiran
,
M. P. S. K.
, and
Joshi
,
S. S.
, 2007, “
Modeling of Surface Roughness and the Role of Debris in Micro-EDM
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
265
273
.
3.
Shen
,
J.
,
Pei
,
Z. J.
, and
Lee
,
E. S.
, 2008, “
Support Vector Fuzzy Adaptive Network in the Modeling of Material Removal Rate in Rotary Ultrasonic Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
4
), p.
041005
.
4.
Kurnia
,
W.
,
Tan
,
P. C.
, and
Yeo
,
S. H.
, 2008, “
Analytical Approximation of the Erosion Rate and Electrode Wear in Micro Electrical Discharge Machining
,”
J. Micromech. Microeng.
0960-1317,
18
, p
085011
.
5.
Wang
,
Y. G.
,
Zhao
,
F. L.
, and
Wang
,
J.
, 2009, “
Wear-Resist Electrodes for Micro-EDM
,”
Chinese Journal of Aeronautics
,
22
(
3
), pp.
339
342
.
6.
Son
,
S. M.
,
Lim
,
H. S.
,
Kumar
,
A. S.
, and
Rahman
,
M.
, 2007, “
Influences of Pulsed Power Condition on the Machining Properties in Micro EDM
,”
J. Mater. Process. Technol.
0924-0136,
190
, pp.
73
76
.
7.
Boccadoro
,
M.
, and
Dauw
,
D. F.
, 1995, “
About the Application of Fuzzy Controllers in High-Performance Die-Sinking EDM Machines
,”
CIRP Ann.
0007-8506,
44
(
1
), pp.
147
150
.
8.
Tarng
,
Y. S.
, and
Jang
,
J. L.
, 1996, “
Genetic Synthesis of a Fuzzy Pulse Discriminator in Electrical Discharge Machining
,”
J. Intell. Manuf.
0956-5515,
7
(
4
), pp.
311
318
.
9.
Tarng
,
Y. S.
,
Tseng
,
C. M.
, and
Chung
,
L. K.
, 1997, “
A Fuzzy Pulse Discriminating System for Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
37
(
4
), pp.
511
522
.
10.
Weck
,
M.
, and
Dehmer
,
J. M.
, 1992, “
Analysis and Adaptive Control of EDM Sinking Process Using the Ignition Delay Time and Fall Time as Parameter
,”
CIRP Ann.
0007-8506,
41
(
1
), pp.
243
246
.
11.
Liu
,
H. S.
, and
Tarng
,
Y. S.
, 1997, “
Monitoring of the Electrical Discharge Machining Process by Abductive Networks
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
13
(
4
), pp.
264
270
.
12.
Lin
,
C. L.
,
Lin
,
J. L.
, and
Ko
,
T. C.
, 2002, “
Optimisation of the EDM Process Based on the Orthogonal Array With Fuzzy Logic and Grey Relational Analysis Method
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
19
(
4
), pp.
271
277
.
13.
Jia
,
Z. Y.
,
Zhou
,
M.
,
Yang
,
L. W.
,
Guo
,
D.
, and
Liu
,
S.
2003, “
Study on the Optimization for Electrical Discharge Machining Micro and Small Hole
,”
Chin. J. Mech. Eng.
0577-6686,
39
(
02
), pp.
106
112
.
14.
Jia
,
Z. Y.
,
Gu
,
F.
,
Wang
,
F. J.
, and
Zhou
,
M.
, 2007, “
Parameter Optimization of EDM Micro-and-Small Holes Based on Signal-to-Noise and Grey Relational Grade
,”
Chin. J. Mech. Eng.
0577-6686,
43
(
07
), pp.
63
67
.
15.
Zhou
,
M.
,
Han
,
F.
, and
Isago
,
S.
, 2008, “
A Time-Varied Predictive Model for EDM Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
15
), pp.
1668
1677
.
16.
Wang
,
H. Y.
, 2005,
Synthesis and Unification Method in Correlation Theory of Signal Processing
,
National Defence Industry
,
Beijing, China
, in Chinese.
17.
Passino
,
K. M.
, and
Yurkovich
,
S.
, 1998,
Fuzzy Control
,
Addison-Wesley Longman, Inc.
,
Menlo Park, CA
.
18.
Yu
,
B.
, and
Ma
,
X. J.
, 1998, “
A New Method for the Analysis of Non-Stationary Nonlinear Vibration Signal and Its Use in Machine Fault Diagnoses
,”
Proceedings of the International Conference on Vibration Engineering
,
Northeastern University Press
,
Shenyang, China
, pp.
668
671
.
19.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
, 1998, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Non-Linear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
0950-1207,
454
, pp.
903
995
.
You do not currently have access to this content.