Abstract

This paper presents new simulation models and global stability charts that have been developed to analyze the principal instabilities and constraints involved in the throughfeed centerless grinding process. In addition to a frequency domain stability analysis of the three characteristic instabilities of the process (geometric lobing, chatter and spinning), new models have been developed and implemented to analyze the other main restrictions, namely, process power, temperature and burning power, roughness, and final part geometrical tolerance due to machine compliance. As a result, new global stability charts have been devised where instabilities are plotted against different productivity rates by combining the two principal variables in the throughfeed process: regulating wheel speed and feed angle. The use of such charts has led to the development of new optimization strategies for throughfeed operation mode and their implementation in a web based SET-UP ASSISTANT software tool developed to improve machining accuracy and productivity in centerless grinding.

1.
Dall
,
A. H.
, 1946, “
Rounding Effect in Centerless Grinding
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
4
, pp.
325
329
.
2.
Gurney
,
J. P.
, 1964, “
An Analysis of Centerless Grinding
,”
ASME J. Eng. Ind.
0022-0817,
85
, pp.
163
174
.
3.
Reeka
,
D.
, 1967, “
On the Relationship Between the Geometry of the Grinding Gap and Roundness Error in Centerless Grinding
,” Ph.D. dissertation, Technischen Hochschule Aachen, Aachen.
4.
Rowe
,
W. B.
,
Barash
,
M. M.
, and
Koenigsberger
,
F.
, 1965, “
Some Roundness Characteristics of Centerless Grinding
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
5
, pp.
203
215
.
5.
Rowe
,
W. B.
, and
Richards
,
D. L.
, 1972, “
Geometric Instability Charts for the Centerless Grinding Process
,”
J. Mech. Eng. Sci.
0022-2542,
14
(
2
), pp.
155
160
.
6.
Rowe
,
W. B.
,
Bell
,
W. F.
, and
Brough
,
D.
, 1986, “
Optimization Studies in High Removal Rate Centreless Grinding
,”
CIRP Ann.
0007-8506,
35
(
1
), pp.
235
238
.
7.
Rowe
,
W. B.
,
Allanson
,
D. R.
,
Pettit
,
J. A.
,
Moruzzi
,
J. L.
, and
Kelly
,
S.
, 1991, “
Intelligent CNC for Grinding
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
205
(
B4
), pp.
233
239
.
8.
Furukawa
,
Y.
,
Miyashita
,
M.
, and
Shiozaki
,
S.
, 1971, “
Vibration Analysis and Work-Rounding Effect in Centerless Grinding
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
11
, pp.
145
175
.
9.
Miyashita
,
M.
,
Hashimoto
,
F.
, and
Kanai
,
A.
, 1982, “
Diagram for Selecting Chatter Free Conditions of Centerless Grinding
,”
CIRP Ann.
0007-8506,
31
(
1
), pp.
221
223
.
10.
Hashimoto
,
F.
,
Suzuki
,
N.
,
Kanai
,
A.
, and
Miyashita
,
M.
, 1982, “
Critical Range of Setup Conditions of Centerless Grinding and Problem of Safe Machining Operation
,”
J. Jpn. Soc. Precis. Eng.
0374-3543,
48
(
8
), pp.
996
1001
.
11.
Hashimoto
,
F.
,
Yoshioka
,
J.
, and
Miyashita
,
M.
, 1986, “
Development of an Algorithm for Giving Optimum Set-Up Conditions for Centerless Grinding Operations
,”
2nd Intermational Grind Conference SME/MR
, pp.
86
628
.
12.
Hashimoto
,
F.
,
Lahoti
,
G. D.
, and
Miyashita
,
M.
, 1998, “
Safe Operations and Friction Characteristics of Regulating Wheel in Centerless Grinding
,”
CIRP Ann.
0007-8506,
47
(
1
), pp.
281
286
.
13.
Hashimoto
,
F.
,
Zhou
,
S. S.
,
Lahoti
,
G. D.
, and
Miyashita
,
M.
, 2000, “
Stability Diagram for Chatter Free Centerless Grinding and Its Application in Machine Development
,”
CIRP Ann.
0007-8506,
49
(
1
), pp.
225
230
.
14.
Hashimoto
,
F.
, and
Lahoti
,
G. D.
, 2004, “
Optimization of Set-Up Conditions for Stability of the Centerless Grinding Process
,”
CIRP Ann.
0007-8506,
53
(
1
), pp.
271
274
.
15.
Takasu
,
S.
, and
Masuda
,
M.
, 1988, “
Heavy Duty Centerless Grinding for Multi-Diameter Shafts
,”
CIRP Ann.
0007-8506,
37
(
1
), pp.
323
326
.
16.
Zhou
,
S. S.
,
Gartner
,
J. R.
, and
Howes
,
T. D.
, 1996, “
On the Relationship Between Setup Parameters and Lobing Behavior in Centerless Grinding
,”
CIRP Ann.
0007-8506,
45
(
1
), pp.
341
346
.
17.
Zhou
,
S.
, and
Petrosky
,
G. C.
, 1997, “
Improving Workpiece Roundness Through Centerless Grinding Cycle Optimization
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
217
222
.
18.
Nieto
,
F. J.
, 1996, “
Estudio teórico y experimental del comportamiento dinámico de las rectificadoras sin centros en sus dos formas de operación: penetración y pasante
,” Doctoral Thesis, E, S.I.I. de San Sebastián, Universidad de Navarra.
19.
Lizarralde
,
R.
,
Gallego
,
I.
,
Barrenetxea
,
D.
, and
Marquínez
,
J. I.
, 2005, “
Practical Application of New Simulation Methods for the Elimination of Geometric Instabilities in Centerless Grinding
,”
CIRP Ann.
0007-8506,
54
(
1
), pp.
273
276
.
20.
Gallego
,
I.
, 2007, “
Intelligent Centerless Grinding: Global Solution for Process Instabilities and Optimal Cycle Design
,”
CIRP Ann.
0007-8506,
56
(
1
), pp.
347
352
.
21.
Li
,
H.
, and
Shin
,
Y. C.
, 2007, “
A Time Domain Dynamic Simulation Model for Stability Prediction of Infeed Centerless Grinding Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
539
550
.
22.
König
,
W.
,
Hönscheid
,
W.
, and
Meis
,
F. U.
, 1976,
Leistungssteigerung beim Spitzenlosen Durchlaufschleifen, Laboratorium für Werkzeugmaschinen und Betriebslehre der Rhein
,
Westf, Techn. Hoschschule
,
Aachen
.
23.
Meis
,
F. U.
, 1980, “
Geometrische und Kinematische Grundlagen für das Spitzenlose Durchlaufschleifen
,” Ph.D. dissertation, Tech. Hochschule, Aachen.
24.
Meis
,
F. U.
, 1981, Geometrische Stabilitaet beim Spitzenlose Durchlaufschleifen, tz fur Metaberbeitung.
25.
Kim
,
K.
, 1992, “
Cylindricity Control in Precision Centerless Grinding
,” Ph.D. thesis dissertation, Purdue University, West Lafayette.
26.
Gallego
,
I.
,
Lizarralde
,
R.
,
Barrenetxea
,
D.
, and
Arrázola
,
P. J.
, 2006, “
Precision, Stability and Productivity Increase in Through-Feed Centerless Grinding
,”
CIRP Ann.
0007-8506,
55
(
1
), pp.
351
354
.
27.
Tönshoff
,
H. K.
,
Peters
,
J.
,
Inasaki
,
T.
, and
Paul
,
T.
, 1992, “
Modelling and Simulation of Grinding Processes
,”
CIRP Ann.
0007-8506,
41
(
2
), pp.
677
688
.
28.
Brinksmeier
,
E.
,
Aurich
,
J. C.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H. W.
,
Klocke
,
F.
,
Peters
,
J.
,
Rentsch
,
R.
,
Stephenson
,
D. J.
,
Uhlmann
,
E.
,
Weinert
,
K.
, and
Wittmann
,
M.
, 2006, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Ann.
0007-8506,
55
(
2
), pp.
667
696
.
29.
Hashimoto
,
F.
, 1995, “
Study on Thru-Feed Centerless Grinding Process
,”
First International Machining and Grinding Conference
, SME Paper No. MR95–200.
30.
Gallego
,
I.
,
Barrenetxea
,
D.
,
Rodríguez
,
A.
,
Marquínez
,
J. I.
,
Unanue
,
A
,
Zarate
,
E.
, 2003, “
Geometric Lobing Suppression in Centerless Grinding by New Simulation Techniques
,”
The 36th CIRP-International Seminar on Manufacturing Systems
, pp.
163
170
.
31.
Malkin
,
S.
, 1989,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
SME
,
Dearborn
.
32.
Ju
,
Y.
,
Farris
,
T. N.
, and
Chandrasekar
,
S.
, 1998, “
Theoretical Analysis of Heat Partition and Temperatures in Grinding
,”
ASME J. Tribol.
0742-4787,
120
, pp.
789
794
.
33.
Madariaga
,
J.
,
Chandrasekar
,
S.
,
Barrenetxea
,
D.
,
Fernández
,
R.
,
Tato
,
W.
,
Marquínez
,
J. I.
,
Cárdenas
,
P.
,
Muguerza
,
I.
,
Arrazola
,
P. J.
, and
Gallego
,
I.
, 2008, “
Medición de temperaturas en rectificado plano empleando técnicas de termografía
,”
XVII Congreso de Máquinas-Herramienta y Tecnologías de Fabricación
, Donostia.
34.
Jaeger
,
J. C.
, 1942, “
Moving Heat and the Temperature at Sliding Contact
,”
J. Proc. R. Soc. N. S. W.
0035-9173,
76
, pp.
203
224
.
35.
Takazawa
,
K.
, 1964, “
The Theory and Method of Measuring the Temperature in Ground Surfaces—Theoretical Analysis of Grinding Temperatures (1st Report)
,”
J. Jpn. Soc. Precis. Eng.
0374-3543,
30
, pp.
851
.
You do not currently have access to this content.