Centering a part on a spindle for precision machining is a tedious, time-consuming task. Currently, a skilled operator must measure the run-out of a part using a displacement gauge, then tap the part into place using a plastic or rubber hammer. This paper describes a method to automatically center a part on a vacuum chuck with initial run-out as large as 2.5 mm. The method involves measuring the magnitude and direction of the radial run-out and then actuating the part until the part and spindle centerlines are within 5μm of each other. The run-out can be measured with either a touch probe mounted to a machine axis or an electronic gauge. The part is tapped into place with a linear actuator driven by a voice coil motor. This paper includes an analysis of run-out measurement uncertainty as well as the design, performance modeling, and testing of the alignment actuator. This actuator was employed for part realignment and successfully positioned a hemispherical part with an initial run-out of 1–2.5 mm to within 5μm of the spindle centerline. This capability shows that the run-out of a part manually placed on flat vacuum chuck can be automatically corrected.

1.
Olsson
,
H.
,
Astrom
,
K. J.
,
Canudas de Wit
,
C.
,
Gafvert
,
M.
, and
Lischinsky
,
P.
, 1998, “
Friction Models and Friction Compensation
,”
Eur. J. Control
0947-3580,
4
, pp.
176
195
.
2.
Haessig
,
D. A.
, and
Friedland
,
B.
, 1991, “
On the Modeling and Simulation of Friction
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
354
362
.
3.
Dahl
,
P.
, 1968, “
A solid Friction Model
,” Aerospace Corp., El Segundo, CA, Technical Report No. TOR-0158(3107-18).
4.
Bowden
,
F. P.
, and
Tabor
,
D.
, 1950,
The Friction and Lubrication of Solids—Part 1
,
Clarendon
,
Oxford
.
5.
Bowden
,
F. P.
, and
Tabor
,
D.
, 1964,
The Friction and Lubrication of Solids—Part 2
,
Clarendon
,
Oxford
.
6.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
, 1991, “
Planar Sliding With Dry Friction. Part 1: Limit Surface and Moment Function
,”
Wear
0043-1648,
143
, pp.
307
330
.
7.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
, 1991, “
Planar Sliding With Dry Friction. Part 2: Dynamics of Motion
,”
Wear
0043-1648,
143
, pp.
331
352
.
8.
Cuttino
,
J. F.
, 1994, “
Identification and Compensation of Nonlinear Effects in Precision Actuator Systems
,” Ph.D. dissertation, North Carolina State University, Raleigh, NC.
9.
Mears
,
L. M.
, 2006, “
Geometry Estimation and Adaptive Actuation for Centering Preprocessing and Precision Measurement
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
10.
Siebenhaar
,
C.
, 2004, “
Precise Adjustment Method Using Stroke Impulse and Friction
,”
Precis. Eng.
0141-6359,
28
, pp.
194
203
.
11.
Huang
,
Y. C.
, and
Lin
,
M. S.
, 2005, “
Tracking Control of a Piezo-Actuated Stage Based on Frictional Model
,”
Proc. SPIE
0277-786X,
5757
, pp.
481
490
.
12.
Huang
,
W. H.
, and
Mason
,
M. T.
, 1998, “
Experiments in Impulsive Manipulation
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation
. Leuven, Belgium.
13.
Huang
,
W. H.
, and
Mason
,
M. T.
, 2000, “
Mechanics, Planning, and Control for Tapping
,”
Int. J. Robot. Res.
0278-3649,
19
(
10
), pp.
883
894
.
14.
Huang
,
W. H.
, 2000, “
A Tapping Micropositioning Cell
,”
Proceedings of the 2000 IEEE Conference on Robotics and Automation
, San Francisco, CA.
15.
Suyama
,
H.
,
Izumi
,
T.
, and
Hitaka
,
Y.
, 1996, “
Two Dimensional Precise Positioning Using an Impulse Force Controlled by Fuzzy Reasoning
,” IEEE.
16.
Baksys
,
B.
, and
Puodziuniene
,
N.
, 2007, “
Alignment of Parts in Automatic Assembly Using Vibrations
,”
Assem. Autom.
0144-5154,
27
(
1
), pp.
38
43
.
17.
Yamagata
,
Y.
, and
Higuchi
,
T.
, 1995, “
A Micropositioning Device for Precision Automatic Assembly Using Impact Force of Piezoelectric Elements
,”
IEEE International Conference on Robotics and Automation
, Nagoya, Japan.
18.
Pohlman
,
R.
, and
Lehfeldt
,
E.
, 1966, “
Influence of Ultrasonic Vibration on Metallic Friction
,”
Ultrasonics
0041-624X,
4
, pp.
178
185
.
19.
Chang
,
K. -T.
, 2005, “
Friction Reduction Using Electrically Energized Piezoelectric Buzzer
,”
Jpn. J. Appl. Phys.
0021-4922,
44
(
9A
), pp.
6636
6643
.
20.
Tsai
,
C. C.
, and
Tseng
,
C. H.
, 2006, “
The Effect of Friction Reduction in the Presence of In-Plane Vibrations
,”
Arch. Appl. Mech.
0939-1533,
75
, pp.
164
176
.
21.
Hesjedal
,
T.
, 2002, “
The Origin of Ultra-Sonic-Induced Friction Reduction in Microscopic Mechanical Contacts
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
49
(
3
), pp.
356
364
.
22.
Shim
,
W.
, 2000, “
Robust Control and Characterization of Nonlinear Microdynamics in a Ball-Screw Driven Slide System
,” Ph.D. dissertation, North Carolina State University, Raleigh, NC.
23.
Park
,
E. C.
,
Lim
,
H.
, and
Choi
,
C. H.
, 2001, “
Characteristics and Compensation of Friction at Velocity Reversal
,”
Proceedings of the American Control Conference
, Vol.
1
, pp.
582
587
.
24.
BEI Kimco Magnetics Division
, 2008, Linear Actuator, Part No. LA12-17-000A, http://www.beikimco.com/actuators_linear.phphttp://www.beikimco.com/actuators_linear.php
25.
Roark
,
R.
, and
Young
,
C. K.
, 1975,
Formulas for Stress and Strain
,
McCraw-Hill
,
New York
.
You do not currently have access to this content.