Cell damage due to the mechanical impact during laser-assisted cell direct writing has been observed and is a possible hurdle for broad applications of fragile cell direct writing. The objective of this study is to numerically investigate the bubble expansion-induced cell mechanical loading profile in laser-assisted cell direct writing. Some conclusions have been drawn as follows. The cell velocity increases initially and then smoothes out gradually with a constant ejection velocity. Both the cell acceleration and pressure can be very high at the beginning period of bubble expansion and then quickly approach zero in an oscillation manner. A high viscosity can lead to an observable velocity increment at the initial stage, but the ejection velocity decreases. The pressure magnitude decreases when the cell-bubble distance is large, and a larger initial pressure induces a larger cell pressure as expected. This study serves as a foundation to further investigate the cell damage mechanism in laser-assisted cell direct writing to improve the effectiveness and efficiency of cell direct writing techniques.

1.
Wang
,
W.
,
Huang
,
Y.
,
Grujicic
,
M.
, and
Chrisey
,
D. B.
, 2008, “
Study of Impact-Induced Mechanical Effects in Cell Direct Writing Using Smooth Particle Hydrodynamic Method
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
2
), pp.
021012
-1–021012-
10
.
2.
Barron
,
J. A.
,
Wu
,
P.
,
Ladouceur
,
H. D.
, and
Ringeisen
,
B. R.
, 2004, “
Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-Dimensional Cell Patterns
,”
Biomed. Microdevices
1387-2176,
6
(
2
), pp.
139
147
.
3.
Ringeisen
,
B. R.
,
Kim
,
H.
,
Barron
,
J. A.
,
Krizman
,
D. B.
,
Chrisey
,
D. B.
,
Jackman
,
S.
,
Auyeung
,
R. Y. C.
, and
Spargo
,
B. J.
, 2004, “
Laser Printing of Pluripotent Embryonal Carcinoma Cells
,”
Tissue Eng.
1076-3279,
10
(
3–4
), pp.
483
491
.
4.
Ringeisen
,
B. R.
,
Othon
,
C. M.
,
Barron
,
J. A.
,
Young
,
D.
, and
Spargo
,
B. J.
, 2006, “
Jet-Based Methods to Print Living Cells
,”
Biotechnology J.
1860-7314,
1
, pp.
930
948
.
5.
Lin
,
Y.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
, 2009, “
Droplet Formation in Matrix-Assisted Pulsed-Laser Evaporation Direct Writing of Glycerol-Water Solution
,”
J. Appl. Phys.
0021-8979,
105
, pp.
093111
-1–093111-
6
.
6.
Odde
,
D. J.
, and
Renn
,
M. J.
, 1999, “
Laser-Guided Direct Writing for Applications in Biotechnology
,”
Trends Biotechnol.
0167-7799,
17
(
10
), pp.
385
389
.
7.
Odde
,
D. J.
, and
Renn
,
M. J.
, 2000, “
Laser-Guided Direct Writing of Living Cells
,”
Biotechnol. Bioeng.
0006-3592,
67
, pp.
312
318
.
8.
Lee
,
S.
, and
Doukas
,
A. G.
, 1999, “
Laser-Generated Stress Waves and Their Effects on the Cell Membrane
,”
IEEE J. Sel. Top. Quantum Electron.
1077-260X,
5
(
4
), pp.
997
1003
.
9.
Vogel
,
A.
, and
Venugopalan
,
V.
, 2003, “
Mechanisms of Pulsed Laser Ablation of Biological Tissues
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
103
, pp.
577
644
.
10.
Vogel
,
A.
,
Busch
,
S.
, and
Parlitz
,
U.
, 1996, “
Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water
,”
J. Acoust. Soc. Am.
0001-4966,
100
(
1
), pp.
148
165
.
11.
Tomita
,
Y.
,
Tsubota
,
M.
, and
An-naka
,
N.
, 2003, “
Energy Evaluation of Cavitation Bubble Generation and Shock Wave Emission by Laser Focusing in Liquid Nitrogen
,”
J. Appl. Phys.
0021-8979,
93
(
5
), pp.
3039
3048
.
12.
Glinsky
,
M. E.
,
Bailey
,
D. S.
,
London
,
R. A.
,
Amendt
,
P. A.
,
Rubenchik
,
M. R.
, and
Strauss
,
M.
, 2001, “
An Extended Rayleigh Model of Bubble Evolution
,”
Phys. Fluids
1070-6631,
13
(
1
), pp.
20
31
.
13.
Byun
,
K. T.
, and
Kwak
,
H. Y.
, 2004, “
A Model of Laser-Induced Cavitation
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
43
(
2
), pp.
621
630
.
14.
Brujan
,
E. A.
, and
Vogel
,
A.
, 2006, “
Stress Wave Emission and Cavitation Bubble Dynamics by Nanosecond Optical Breakdown in a Tissue Phantom
,”
J. Fluid Mech.
0022-1120,
558
, pp.
281
308
.
15.
Friedman
,
M.
,
Strauss
,
M.
,
Amendt
,
P.
,
London
,
R. A.
, and
Glinsky
,
M. E.
, 2002, “
Two-Dimensional Rayleigh Model for Bubble Evolution in Soft Tissue
,”
Phys. Fluids
1070-6631,
14
(
5
), pp.
1768
1780
.
16.
Lokhandwalla
,
M.
, and
Sturtevant
,
B.
, 2001, “
Mechanical Haemolysis in Shock Wave Lithotripsy (SWL): I. Analysis of Cell Deformation Due to SWL Flow-Fields
,”
Phys. Med. Biol.
0031-9155,
46
, pp.
413
437
.
17.
2007, LS-DYNA Keyword User’s Manual, Livermore Software Technology Corporation, Livermore, CA.
18.
Stammen
,
J. A.
,
Williams
,
S.
,
Ku
,
D. N.
, and
Guldberg
,
R. E.
, 2001, “
Mechanical Properties of a Novel PVA Hydrogel in Shear and Unconfined Compression
,”
Biomaterials
0142-9612,
22
, pp.
799
806
.
19.
Vijayasekaran
,
S.
,
Fitton
,
J. H.
,
Hicks
,
C. R.
,
Chirila
,
T. V.
,
Crawford
,
G. J.
, and
Constable
,
I. J.
, 1998, “
Cell Viability and Inflammatory Response in Hydrogel Sponges Implanted in the Rabbit Cornea
,”
Biomaterials
0142-9612,
19
(
24
), pp.
2255
2267
.
20.
Young
,
C. D.
,
Wu
,
J. R.
, and
Tsou
,
T. L.
, 1998, “
High-Strength, Ultra-Thin and Fiber-Reinforced pHEMA Artificial Skin
,”
Biomaterials
0142-9612,
19
, pp.
1745
1752
.
21.
Wang
,
T.
,
Turhan
,
M.
, and
Gunasekaran
,
S.
, 2004, “
Selected Properties of pH-Sensitive, Biodegradable Chitosan-Poly (Vinyl Alcohol) Hydrogel
,”
Polym. Int.
0959-8103,
53
, pp.
911
918
.
22.
Nam
,
K.
,
Watanabe
,
J.
, and
Ishihara
,
K.
, 2005, “
Network Structure of Spontaneously Forming Physically Cross-Link Hydrogel Composed of Two-Water Soluble Phospholipid Polymers
,”
Polymer
0032-3861,
46
, pp.
4704
4713
.
23.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2002, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
214
222
.
24.
Drury
,
J. L.
,
Dennis
,
R. G.
, and
Mooney
,
D. J.
, 2004, “
The Tensile Properties of Alginate Hydrogels
,”
Biomaterials
0142-9612,
25
, pp.
3187
3199
.
25.
Lin
,
D. C.
,
Yurke
,
B.
, and
Langrana
,
N. A.
, 2004, “
Mechanical Properties of a Reversible, DNA-Crosslinked Polyacrylamide Hydrogel
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
104
110
.
26.
Lim
,
C. T.
,
Zhou
,
E. H.
, and
Quek
,
S. T.
, 2006, “
Mechanical Models for Living Cells—A Review
,”
J. Biomech.
0021-9290,
39
, pp.
195
216
.
27.
Breuls
,
R. G. M.
,
Bouten
,
C. V. C.
,
Oomens
,
C. W. J.
,
Bader
,
D. L.
, and
Baaijens
,
F. P. T.
, 2003, “
A Theoretical Analysis of Damage Evolution in Skeletal Muscle Tissue With Reference to Pressure Ulcer Development
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
902
909
.
28.
Ohayon
,
J.
, and
Tracqui
,
P.
, 2005, “
Computation of Adherent Cell Elasticity for Critical Cell-Bead Geometry in Magnetic Twisting Experiments
,”
Ann. Biomed. Eng.
0090-6964,
33
(
2
), pp.
131
141
.
29.
Plesset
,
M. S.
, and
Prosperetti
,
A.
, 1977, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
145
185
.
30.
Gerstman
,
B. S.
,
Thompson
,
C. R.
,
Jacques
,
S. L.
, and
Rogers
,
M. E.
, 1996, “
Laser Induced Bubble Formation in the Retina
,”
Lasers Surg. Med.
0196-8092,
18
, pp.
10
21
.
31.
McAuliffe
,
D. J.
,
Lee
,
S.
,
Flotte
,
T. J.
, and
Doukas
,
A. G.
, 1997, “
Stress-Wave-Assisted Transport Through the Plasma Membrane In Vitro
,”
Lasers Surg. Med.
0196-8092,
20
, pp.
216
222
.
32.
Lee
,
S.
,
McAuliffe
,
D. J.
,
Zhang
,
H.
,
Xu
,
Z.
,
Taitelbaum
,
J.
,
Flotte
,
T. J.
, and
Doukas
,
A. G.
, 1997, “
Stress-Wave-Induced Membrane Permeation of Red Blood Cells is Facilitated by Aquaporins
,”
Ultrasound Med. Biol.
0301-5629,
23
, pp.
1089
1094
.
33.
Kasza
,
K. E.
,
Rowat
,
A. C.
,
Liu
,
J.
,
Angelini
,
T. E.
,
Brangwynne
,
C. P.
,
Koenderink
,
G. H.
, and
Weitz
,
D. A.
, 2007, “
The Cell as a Material
,”
Curr. Opin. Cell Biol.
0955-0674,
19
, pp.
101
107
.
You do not currently have access to this content.