Advances in sensor technology have led to an increased interest in using degradation-based sensory information to predict the remaining lives of partially degraded components and systems. This paper presents a stochastic degradation modeling framework for computing and continuously updating remaining life distributions (RLDs) using in situ degradation signals acquired from individual components during their operational lives. Unfortunately, these sensory-updated RLDs cannot be characterized using parametric distributions and their moments do not exist. Such difficulties hinder the implementation of this sensor-based framework, especially from the standpoint of computational efficiency of embedded algorithms. In this paper, we identify an approximate procedure by which we can compute a conservative mean of the sensory-updated RLDs and express the mean and variance using closed-form expressions that are easy to evaluate. To accomplish this, we use the first passage time of Brownian motion with positive drift, which follows an inverse Gaussian distribution, as an approximation of the remaining life. We then show that the mean of the inverse Gaussian is a conservative lower bound of the mean remaining life using Jensen’s inequality. The results are validated using real-world vibration-based degradation information.

1.
Feser
,
K.
,
Feuchter
,
B.
,
Lauersdorf
,
M.
, and
Leibfried
,
T.
, 1995, “
General Trends in Condition Monitoring of Electrical Insulation of Power Transformers
,”
Proceedings of the Stockholm Power Tech International Symposium on Electric Power Engineering
, Piscataway, NJ, pp.
104
109
.
2.
Martin
,
K.
, 1994, “
Review by Discussion of Condition Monitoring and Fault Diagnosis in Machine Tools
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
(
4
), pp.
527
551
.
3.
Thorsen
,
O. V.
, and
Dalva
,
M.
, 1999, “
Failure Identification and Analysis for High-Voltage Induction Motors in the Petrochemical Industry
,”
IEEE Trans. Ind. Appl.
0093-9994,
35
(
4
), pp.
810
818
.
4.
Barron
,
R.
, 1996,
Engineering Condition Monitoring
,
Addison-Wesley
,
Reading, MA
.
5.
Lu
,
C. J.
, and
Meeker
,
W. Q.
, 1993, “
Using Degradation Measures to Estimate a Time-to-Failure Distribution
,”
Technometrics
0040-1706,
35
(
2
), pp.
161
174
.
6.
Gebraeel
,
N. Z.
,
Lawley
,
M. A.
,
Li
,
R.
, and
Ryan
,
J. K.
, 2005, “
Residual-Life Distribution From Component Degradation Signals: A Bayesian Approach
,”
IIE Trans.
0740-817X,
37
, pp.
543
557
.
7.
Yang
,
K.
, and
Yang
,
G.
, 1998, “
Degradation Reliability Assessment Using Severe Critical Values
,”
Int. J. Reliab. Qual. Saf. Eng.
,
5
(
1
), pp.
85
95
. 0218-5393
8.
Yang
,
K.
, and
Jeang
,
A.
, 1994, “
Statistical Surface Roughness Checking Procedure Based on a Cutting Tool Wear Model
,”
J. Manuf. Syst.
0278-6125,
13
, pp.
1
8
.
9.
Doksum
,
K. A.
, and
Hoyland
,
A.
, 1992, “
Models for Variable-Stress Accelerated Life Testing Experiments Based on Wiener Processes and the Inverse Gaussian Distribution
,”
Technometrics
0040-1706,
34
(
1
), pp.
74
82
.
10.
Whitmore
,
G. A.
, and
Schenkelberg
,
F.
, 1997, “
Modeling Accelerated Degradation Using Wiener Diffusion With a Time Scale Transformation
,”
Lifetime Data Anal
1380-7870,
3
(
1
), pp.
27
45
.
11.
Whitmore
,
G. A.
, 1995, “
Estimating Degradation by a Wiener Diffusion Process Subject to Measurement Error
,”
Lifetime Data Anal
1380-7870,
1
, pp.
307
319
.
12.
Pettit
,
L. I.
, and
Young
,
K. D. S.
, 1999, “
Bayesian Analysis for Inverse Gaussian Distribution Lifetime Data With Measures of Degradation
,”
Lifetime Data Anal
1380-7870,
63
, pp.
217
234
.
13.
Gebraeel
,
N.
, 2006, “
Sensory Updated Residual Life Distribution for Components With Exponential Degradation Patterns
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
4
), pp.
382
393
. 1545-5955
14.
Ahmad
,
M.
, and
Sheikh
,
A. K.
, 1984, “
Bernstein Reliability Model: Derivation and Estimation of Parameters
,”
Reliab. Eng.
,
8
, pp.
131
148
. 0143-8174
15.
Robinson
,
M. E.
, and
Crowder
,
M. J.
, 2000, “
Bayesian Methods for a Growth-Curve Degradation Model With Repeated Measures
,”
Lifetime Data Anal
1380-7870,
6
(
4
), pp.
357
374
.
16.
Bae
,
S. J.
, and
Kvam
,
P. H.
, 2004, “
A Nonlinear Random-Coefficients Model for Degradation Testing
,”
Technometrics
0040-1706,
46
(
4
), pp.
460
469
.
17.
Padgett
,
W. J.
, and
Tomlinson
,
M. A.
, 2004, “
Inference From Accelerated Degradation and Failure Data Based on Gaussian Process Models
,”
Lifetime Data Anal
1380-7870,
10
, pp.
191
206
.
18.
Bae
,
S. J.
,
Kuo
,
W.
, and
Kvam
,
P. H.
, 2007, “
Degradation Models and Implied Lifetime Distributions
,”
Reliab. Eng. Syst. Saf.
0951-8320,
92
, pp.
601
608
.
19.
Park
,
C.
, and
Padgett
,
W. J.
, 2006, “
Stochastic Degradation Models With Several Accelerating Variables
,”
IEEE Trans. Reliab.
0018-9529,
55
(
2
), pp.
379
390
.
20.
Kharoufeh
,
J. P.
, and
Cox
,
S. M.
, 2005, “
Stochastic Models for Degradation-Based Reliability
,”
IIE Trans.
0740-817X,
37
, pp.
533
542
.
21.
Tang
,
L. C.
, and
Chang
,
D. S.
, 1995, “
Reliability Prediction Using Nondestructive Accelerated-Degradation Data: Case Study on Power Supplies
,”
IEEE Trans. Reliab.
0018-9529,
44
(
4
), pp.
562
566
.
22.
Whitmore
,
G. A.
,
Crowder
,
M. J.
, and
Lawless
,
J. F.
, 1998, “
Failure Inference From a Marker Process Based on a Bivariate Wiener Model
,”
Lifetime Data Anal
1380-7870,
4
(
3
), pp.
229
251
.
23.
Gebraeel
,
N.
,
Lawley
,
M.
,
Li
,
R.
, and
Ryan
,
J. K.
, 2001, “
Life Distributions From Polynomial and Exponential Component Degradation Signals: Bayesian Approach
,” Purdue Research Memorandum No. 01-04.
24.
Harris
,
T. A.
, 2001,
Rolling Bearing Analysis
,
4th ed.
,
Wiley
,
New York
.
25.
Gebraeel
,
N.
,
Lawley
,
M.
,
Liu
,
R.
, and
Parmeshwaran
,
V.
, 2004, “
Life Distributions From Component Degradation Signals: A Neural Net Approach
,”
IEEE Trans. Ind. Electron.
0278-0046,
51
(
3
), pp.
694
700
.
26.
Chhikara
,
R. S.
, and
Folks
,
J. L.
, 1989,
The Inverse Gaussian Distribution: Theory, Methodology, and Applications
,
Dekker
,
New York
.
27.
Park
,
C.
, and
Padgett
,
W. J.
, 2005, “
New Cumulative Damage Models for Failure Using Stochastic Processes as Initial Damage
,”
IEEE Trans. Reliab.
0018-9529,
54
(
3
), pp.
530
540
.
28.
Yang
,
Z.
, 1999, “
Maximum Likelihood Predictive Densities for the Inverse Gaussian Distribution With Applications to Reliability and Lifetime Predictions
,”
Microelectron. Reliab.
0026-2714,
39
(
9
), pp.
1413
1421
.
29.
Tang
,
L. C.
,
Lu
,
Y.
, and
Chew
,
E. P.
, 1999, “
Mean Residual Life of Lifetime Distributions
,”
IEEE Trans. Reliab.
0018-9529,
48
(
1
), pp.
73
78
.
30.
Jain
,
R. K.
, and
Jain
,
S.
, 1996, “
Inverse Gaussian Distribution and Its Application to Reliability
,”
Microelectron. Reliab.
0026-2714,
36
(
10
), pp.
1323
1335
.
31.
Seshadri
,
V.
, 1998,
The Inverse Gaussian Distribution: Statistical Theory and Applications
,
Springer
,
New York
.
32.
Casella
,
G.
, and
Berger
,
L. B.
, 2002,
Statistical Inference
,
2nd ed.
,
Duxbury
,
Belmont, CA
.
33.
Shao
,
Y.
, and
Nezu
,
K.
, 2000, “
Prognosis of Remaining Bearing Life Using Neural Networks
,”
Proc. Inst. Mech. Eng., Part I: J. Systems and Control Engineering
,
214
(
3
), pp.
217
230
.
34.
Nelson
,
W.
, 1990,
Accelerated Testing: Statistical Models, Test Plans, and Data Analysis
,
Wiley
,
New York
.
35.
Johnson
,
R. A.
, and
Wichern
,
D. W.
, 2002,
Applied Multivariate Statistical Analysis
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.