The inspection of machined objects is one of the most important quality control tasks in the manufacturing industry. Contemporary scanning technologies have provided the impetus for the development of computational inspection methods, where the computer model of the manufactured object is reconstructed from the scan data, and then verified against its digital design model. Scan data, however, are typically very large scale (i.e., many points), unorganized, noisy, and incomplete. Therefore, reconstruction is problematic. To overcome the above problems the reconstruction methods may exploit diverse feature data, that is, diverse information about the properties of the scanned object. Based on this concept, the paper proposes a new method for denoising and reduction in scan data by extended geometric filter. The proposed method is applied directly on the scanned points and is automatic, fast, and straightforward to implement. The paper demonstrates the integration of the proposed method into the framework of the computational inspection process.

1.
Perona
,
P.
, and
Malik
,
J.
, 1990, “
Scale-Space and Edge Detection Using Anisotropic Diffusion
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
12
(
7
), pp.
629
639
.
2.
Tumblin
,
J.
, and
Turk
,
G.
, 1999, “
Low Curvature Image Simplifiers (LCIS): A Boundary Hierarchy for Detail-Preserving Contrast Reduction
,”
SIGGRAPH Conference Proceedings
, pp.
83
90
.
3.
Tomasi
,
C.
, and
Manduchi
,
R.
, 1998, “
Bilateral Filtering For Gray and Color Images
,”
Proceedings of the IEEE International Conference on Computer Vision
, pp.
836
846
.
4.
Barash
,
D.
, 2002, “
A Fundamental Relationship Between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
24
(
6
), pp.
844
847
.
5.
Durand
,
F.
, and
Dorsey
,
J.
, 2002, “
Fast Bilateral Filtering for the Display of High-Dynamicrange Images
,”
ACM Trans. Graphics
0730-0301,
21
(
3
), pp.
257
266
.
6.
Elad
,
M.
, 2002, “
On the Origin of the Bilateral Filter and Ways to Improve It
,”
IEEE Trans. Image Process.
1057-7149,
11
(
10
), pp.
1141
1151
.
7.
Azernikov
,
S.
, and
Fischer
,
A.
, 2006, “
A New Volume Warping Method for Surface Reconstruction
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
, pp.
355
363
.
8.
Bernardini
,
F.
,
Bajaj
,
C. L.
,
Chen
,
J.
, and
Schikore
,
D. R.
, 1997, “
A Triangulation-Based Object Reconstruction Method
,”
Proceedings of the 13th Annual Symposium on Computational Geometry
, pp.
481
484
.
9.
Fleishman
,
S.
,
Drori
,
I.
, and
Cohen-Or
,
D.
, 2003, “
Bilateral Mesh Denoising
,”
Proceedings of the SIGGRAPH
, pp.
950
953
.
10.
Taubin
,
G.
, 1995, “
A Signal Processing Approach to Fair Surface Design
,”
Proceedings of the SIGGRAPH
, pp.
351
358
.
11.
Desbrun
,
M.
,
Meyer
,
M.
,
Schräoder
,
P.
, and
Barr
,
A. H.
, 1999, “
Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow
,”
SIGGRAPH99
, pp.
317
324
.
12.
Taubin
,
G.
, 2000, “
Geometric Signal Processing on Polygonal Meshes
,” EUROGRAPHICS: State of the Art Reports, pp.
107
117
.
13.
Taubin
,
G.
, 2001, “
Linear Anisotropic Mesh Filtering
,” IBM Research Report No. RC22213.
14.
Desbrun
,
M.
,
Meyer
,
M.
,
Schräoder
,
P.
, and
Barr
,
A. H.
, 2000, “
Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data
,”
Graphics Interface
, pp.
145
152
.
15.
Bajaj
,
C.
, and
Xu
,
G.
, 2003, “
Anisotropic Diffusion on Surface and Function on Surfaces
,”
ACM Trans. Graphics
0730-0301,
22
, pp.
4
32
.
16.
Peng
,
J.
,
Strela
,
V.
, and
Zorin
,
D.
, 2001, “
A Simple Algorithm for Surface Denoising
,”
Proceedings of IEEE Visualization
, pp.
107
112
.
17.
Alexa
,
M.
, 2002, “
Wiener Filtering of Meshes
,”
Proceedings of the Shape Modeling International 2002
, pp.
51
57
.
18.
Choudhury
,
P.
, and
Tumblin
,
J.
, 2003, “
The Trilateral Filter for High Contrast Images and Meshes
,”
ACM International Conference Proceeding Series
,
44
, pp.
186
196
.
19.
Alexa
,
M.
,
Behr
,
J.
,
Cohen-Or
,
D.
,
Fleishman
,
S.
,
Levin
,
D.
, and
Silva
,
C.
, 2001, “
Point Set Surfaces
,”
Proceedings of the Conference on Visualization
, pp.
21
28
.
20.
Linsen
,
L.
, 2001, “
Point Cloud Representation
,” Faculty of Computer Science, University of Karlsruhe Technical Report No. 2001-3.
21.
Mederos
,
B.
,
Velho
,
L.
, and
de Figueiredo
,
L. H.
, 2004, “
Smooth Surface Reconstruction From Noisy Clouds
,”
Journal of the Brazilian Computing Society
,
9
(
3
), pp.
52
66
.
22.
Weyrich
,
T.
,
Pauly
,
M.
,
Heinzle
,
S.
,
Keiser
,
R.
, and
Scandella
,
S.
, 2004, “
Post-Processing of Scanned 3D Surface Data
,”
Eurographics Symposium on Point-Based Graphics
, pp.
85
94
.
23.
Dey
,
T. K.
,
Goswami
,
S.
, and
Sun
,
J.
, 2004, “
Smoothing Noisy Point Clouds With Delaunay Preprocessing and MLS
,” The Ohio State University Technical Report No. OSU-CISRC-3/04-TR17.
24.
Levin
,
D.
, 2003, “
Mesh-Independent Surface Interpolation
,”
Geometric Modeling for Scientific Visualization
, pp.
37
49
.
25.
Lange
,
C.
, and
Polthier
,
K.
, 2005, “
Anisotropic Fairing of Point Sets
,”
Comput. Aided Geom. Des.
0167-8396,
22
(
7
), pp.
680
692
.
26.
Schall
,
O.
,
Belyaev
,
A.
, and
Seidel
,
H. -P.
, 2005, “
Robust Filtering of Noisy Scattered Point Data
,”
IEEE/Eurographics Symposium on Point-Based Graphics
, pp.
71
77
.
27.
Comaniciu
,
D.
, and
Meer
,
P.
, 2002, “
Mean Shift: A Robust Approach Toward Feature Space Analysis
,”
ACM Trans. Graphics
0730-0301,
24
(
5
), pp.
603
619
.
28.
Miropolsky
,
A.
, and
Fischer
,
A.
, 2004, “
Reconstruction With 3D Geometric Bilateral Filter
,”
Ninth ACM Symposium on Solid Modeling and Applications
, pp.
225
231
.
29.
Miropolsky
,
A.
, and
Fischer
,
A.
, 2007, “
Utilizing Diverse Feature Data for Reconstruction of Scanned Object as a Basis for Inspection
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
3
), pp.
211
224
.
30.
Lorensen
,
W. E.
, and
Cline
,
H. E.
, 1987, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
ACM SIGGRAPH Computer Graphics
,
21
(
4
), pp.
163
169
.
31.
Azernikov
,
S.
,
Miropolsky
,
A.
, and
Fischer
,
A.
, 2003, “
Surface Reconstruction of Freeform Objects From 3D Camera Data Based on Multiresolution Volumetric Method
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
3
, pp.
334
338
.
32.
Willmore
,
T. J.
, 1993,
Riemannian Geometry
,
Clarendon
,
Oxford
.
33.
Kimmel
,
R.
, and
Bruckstein
,
A. M.
, 2003, “
Regularized Laplacian Zero Crossings as Optimal Edge Integrators
,”
Int. J. Comput. Vis.
0920-5691,
53
(
3
), pp.
225
243
.
34.
Goodall
,
C.
, 1983, “
M-Estimators of Location: An Outline of the Theory
,”
Understanding Robust and Exploratory Data Analysis
, pp.
339
403
.
35.
Black
,
M.
, and
Rangarajan
,
A.
, 1996, “
On the Unification of the Line Processes, Outlier Rejection, and Robust Statistics With Applications in Early Vision
,”
Int. J. Comput. Vis.
0920-5691,
19
, pp.
57
91
.
You do not currently have access to this content.