Until today, there are only automated processes able to manufacture composite components with a constant thickness. This work focuses on the need to find a system able to manufacture composite structural parts characterized by a variable thickness. An innovative tape placement robotic cell composed of a deposition integrated system and an anthropomorphic robot with 6DOF is shown in this work. The main characteristics of the designed deposition integrated system are (i) alternate deposition movement, (ii) tape compaction system, and (iii) tape tension control system by proportional-integral-derivative (PID) controllers. With these systems, it is possible to obtain a high flexibility robotic cell that allows to manufacture variable thickness components with good mechanical volumetric properties. After the design phase, the system has been realized and afterwards it has been validated by analyzing the experimental tests with the quality of some benchmark manufactured by the innovative cell.

1.
Barth
,
J. R.
, 1990, “
Fabrication of Complex Composite Structures Using Advanced Fiber Placement Technology
,”
35th International Sampe Symposium
, Book 1, Apr., pp.
710
720
.
2.
Bullock
,
,
Kowalski
,
,
Young
,
, 1990, “
Automated Prepreg Tow Placement for Composite Structures
,”
35th International Sampe Symposium
, Book 1, Apr., pp.
734
743
.
3.
Ghasemi Nejhad
,
M.
,
Cope
,
R.
, and
Guceri
,
S.
, 1991, “
Thermal Analysis of In-Situ Thermoplastic Composite Tape Laying
,”
Journal of Thermoplastic Composite Materials
,
4
(
1
), pp.
20
45
.
4.
Wakeman
,
M. D.
,
Hagstrand
,
P. -O.
,
Bonjour
,
F.
,
Bourban
,
P. -E.
, and
Manson
,
J. -A. E.
, 2002, “
Robotic Tow Placement for Local Reinforcement of Glass Mat Thermoplastics (GMTs)
,”
Composites, Part A
1359-835X,
33
(
9
), pp.
1199
1208
.
5.
Shirinzadeh
,
B.
,
Alici
,
G.
,
Foong
,
C. W.
, and
Cassidy
,
G.
, 2004, “
Fabrication Process of Open Surfaces by Robotic Fibre Placement
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
20
(
1
), pp.
17
28
.
6.
Beckwith
,
S. W.
,
Jackson
,
D.
,
Dixon
,
M.
,
Shepheard
,
B.
, and
Bunch
,
P.
, 2005, “
Filament Winding and Fiber Placement Advances: Oil field, Energy and Wind Energy Advances: Oilfield, Energy and Wind Energy Markets
,”
Filament Winding 05
, Brussels, Belgium, Oct. 12–14, Paper No. 7.
7.
Lu
,
H.
,
Ller
,
M. S.
,
Himmel
,
N.
, and
Schledjewski
,
R.
, 2005, “
Effects of Tape Tension on Residual Stress in Thermoplastic Composite Filament Winding
,”
Journal of Thermoplastic Composite Materials
,
18
, pp.
469
487
.
8.
Schlimbach
,
J.
, and
Mitschang
,
P.
, 2006, “
Process-Based Cycle Time Estimation for the Thermoplastic Tape Placement
,”
Journal of Thermoplastic Composite Materials
,
19
, pp.
507
529
. 0741-8639
9.
Schledjewski
,
R.
, and
Schlarb
,
A. K.
, 2006, “
Thermoplastic Tape Placement Process Fully Automated Lay-Up of Complex Shaped Parts
,”
ECCM12: 12th European Conference on Composite Materials
, Biarritz, France, Aug. 29–Sept. 1, Paper No. 155.
10.
Sonmez
,
F. O.
, and
Akbulut
,
M.
, 2007, “
Process Optimization of Tape Placement for Thermoplastic Composites
,”
Composites, Part A
1359-835X,
38
(
9
), pp.
2013
2023
.
11.
Shirinzadeh
,
B.
,
Cassidy
,
G.
,
Oetomo
,
D.
,
Alici
,
G.
, and
Ang
,
M. H.
, Jr.
, 2007, “
Trajectory Generation for Open-Contoured Structures in Robotic Fibre Placement
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
23
(
4
), pp.
380
394
.
12.
Carpenter
,
C. E.
, and
Colton
,
J. S.
, 1993, “
On-Line Consolidation Mechanisms in Thermoplastic Filament Winding
,”
Composite Modeling and Processing Science, Proceedings of the Ninth International Conference on Composite Materials (ICCM/9)
, Madrid, pp.
430
437
.
13.
Pitchumani
,
R.
,
Gillespie
,
J.
, Jr.
, and
Lamontia
,
M.
, 1997, “
Design and Optimization of a Thermoplastic Tow-Placement Process With In-Situ Consolidation
,”
J. Compos. Mater.
0021-9983,
31
(
3
), pp.
244
275
.
14.
Sonmez
,
F. O.
, and
Hahn
,
H. T.
, 1997, “
Modeling of Heat Transfer and Crystallization in Thermoplastic Composite Tape Placement Process
,”
Journal of Thermoplastic Composite Materials
,
10
(
3
), pp.
198
240
.
15.
Sonmez
,
F. O.
, and
Hahn
,
H. T.
, 1997, “
Thermoviscoelastic Analysis of the Thermoplastic Composite Tape Placement Process
,”
Journal of Thermoplastic Composite Materials
,
10
(
4
), pp.
381
414
.
16.
Sonmez
,
F. O.
, and
Hahn
,
H. T.
, 1997, “
Analysis of the On-Line Consolidation Process in Thermoplastic Composite Tape Placement
,”
Journal of Thermoplastic Composite Materials
,
10
(
6
), pp.
543
572
.
17.
Beyerl
,
E.
, and
Guceri
,
S.
, 1998, “
Experimental Investigation of Laser Assisted Thermoplastic Tape Consolidation
,”
Journal of Thermoplastic Composite Materials
,
1
, pp.
107
121
.
18.
Sonmez
,
F. O.
,
Hahn
,
H. T.
, and
Akbulut
,
M.
, 2002, “
Analysis of Process-Induced Residual Stresses in Tape Placement
,”
Journal of Thermoplastic Composite Materials
,
15
, pp.
525
544
.
19.
Heider
,
D.
,
Piovoso
,
M. J.
, and
Gillespie
,
J. W.
, 2003, “
A Neural Network Model-Based Open-Loop Optimization for the Automated Thermoplastic Composite Tow-Placement System
,”
Composites, Part A
1359-835X,
34
(
8
), pp.
791
799
.
20.
Guan
,
X.
, and
Pitchumani
,
R.
, 2004, “
Modeling of Spherulitic Crystallization in Thermoplastic Tow-Placement Process: Heat Transfer Analysis
,”
Compos. Sci. Technol.
0266-3538,
64
(
9
), pp.
1123
1134
.
21.
Toso
,
Y. M. P.
,
Ermanni
,
P.
, and
Poulikakos
,
D.
, 2004, “
Thermal Phenomena in Fiber-Reinforced Thermoplastic Tape Winding Process: Computational Simulations and Experimental Validations
,”
J. Compos. Mater.
0021-9983,
38
(
2
), pp.
107
135
.
22.
Hassan
,
N.
,
Thompson
,
J. E.
,
Batra
,
R. C.
,
Hulcher
,
A. B.
,
Song
,
X.
, and
Loos
,
A. C.
, 2005, “
A Heat Transfer Analysis of the Fiber Placement Composite Manufacturing Process
,”
J. Reinf. Plast. Compos.
0731-6844,
24
(
8
), pp.
869
888
.
23.
Tierney
,
J.
, and
Gillespie
,
J. W.
, Jr.
, 2006, “
Modeling of In Situ Strength Development for the Thermoplastic Composite Tow Placement Process
,”
J. Compos. Mater.
0021-9983,
40
(
16
), pp.
1487
1506
.
You do not currently have access to this content.