Electrospinning has become a popular technique for fabricating nanofibers from a variety of materials and has been tailored for a multitude of applications. These nanofibers may be used as devices (e.g., biosensors, field effect transistors (FETs), and resonators) or may be used to fabricate nanoscale features in other materials. Several methods for controlling the orientation of deposited fibers have been demonstrated, including linear and rotary mechanical motion, using prepatterned electrodes on a substrate to attract the fibers, and using electric fields to alter the path of the electrospinning jet in-flight. Electrospinning systems employing more complex tip geometries have been investigated. Several techniques have been developed to overcome the problem of low mass throughput, including using large arrays of electrospinning tips fed by the same solution and various tipless electrospinning techniques. The electrospinning tip has also been modified to produce either side-by-side or coaxial multicomponent fibers and tubes. The mechanism by which the fluid jet solidifies into fibers has also been varied, and though most electrospinning experiments still rely upon in-flight solvent evaporation for solidification, melt electrospinning and in-flight polymerization have also been investigated. This article will review recent developments in electrospinning techniques and applications.

1.
Yarin
,
A. L.
,
Koombhongse
,
S.
, and
Reneker
,
D. H.
, 2001, “
Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers
,”
J. Appl. Phys.
0021-8979,
90
(
9
), pp.
4836
4846
.
2.
Taylor
,
G.
, 1964, “
Disintegration of Water Drops in an Electric Field
,”
Proc. R. Soc. London, Ser. A
0950-1207,
280
(
1382
), pp.
383
397
.
3.
Reneker
,
D. H.
,
Yarin
,
A. L.
,
Hao
,
F.
, and
Koombhongse
,
S.
, 2000, “
Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning
,”
J. Appl. Phys.
0021-8979,
87
(
9
), pp.
4531
4547
.
4.
Yarin
,
A. L.
,
Koombhongse
,
S.
, and
Reneker
,
D. H.
, 2001, “
Bending Instability in Electrospinning of Nanofibers
,”
J. Appl. Phys.
0021-8979,
89
(
5
), pp.
3018
3026
.
5.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G.
, and
Brenner
,
M. P.
, 2001, “
Electrospinning and Electrically Forced Jets. II. Applications
,”
Phys. Fluids
1070-6631,
13
(
8
), pp.
2221
2236
.
6.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G.
, and
Brenner
,
M. P.
, 2001, “
Electrospinning and Electrically Forced Jets. I. Stability Theory
,”
Phys. Fluids
1070-6631,
13
(
8
), pp.
2201
2220
.
7.
Shin
,
Y. M.
,
Hohman
,
M. M.
,
Brenner
,
M. P.
, and
Rutledge
,
G. C.
, 2001, “
Electrospinning: A Whipping Fluid Jet Generates Submicron Polymer Fibers
,”
Appl. Phys. Lett.
0003-6951,
78
(
8
), pp.
1149
1151
.
8.
Feng
,
J. J.
, 2002, “
The Stretching of an Electrified Non-Newtonian Jet: A Model for Electrospinning
,”
Phys. Fluids
1070-6631,
14
(
11
), pp.
3912
3926
.
9.
Yun
,
K. M.
,
Hogan
,
C. J.
, Jr.
,
Matsubayashi
,
Y.
,
Kawabe
,
M.
,
Iskandar
,
F.
, and
Okuyama
,
K.
, 2007, “
Nanoparticle Filtration by Electrospun Polymer Fibers
,”
Chem. Eng. Sci.
0009-2509,
62
(
17
), pp.
4751
4759
.
10.
Gopal
,
R.
,
Kaur
,
S.
,
Feng
,
C. Y.
,
Chan
,
C.
,
Ramakrishna
,
S.
,
Tabe
,
S.
, and
Matsuura
,
T.
, 2007, “
Electrospun Nanofibrous Polysulfone Membranes as Pre-Filters: Particulate Removal
,”
J. Membr. Sci.
0376-7388,
289
(
1–2
), pp.
210
219
.
11.
Boudriot
,
U.
,
Dersch
,
R.
,
Greiner
,
A.
, and
Wendorff
,
J. H.
, 2006, “
Electrospinning Approaches Toward Scaffold Engineering—A Brief Overview
,”
Artif. Organs
0160-564X,
30
(
10
), pp.
785
792
.
12.
Li
,
W. J.
,
Laurencin
,
C. T.
,
Caterson
,
E. J.
,
Tuan
,
R. S.
, and
Ko
,
F. K.
, 2002, “
Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304,
60
(
4
), pp.
613
621
.
13.
Khil
,
M. -S.
,
Bhattarai
,
S. R.
,
Kim
,
H. -Y.
,
Kim
,
S. -Z.
, and
Lee
,
K. -H.
, 2005, “
Novel Fabricated Matrix Via Electrospinning for Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304,
72B
(
1
), pp.
117
124
.
14.
Yoshimoto
,
H.
,
Shin
,
Y. M.
,
Terai
,
H.
, and
Vacanti
,
J. P.
, 2003, “
A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
24
(
12
), pp.
2077
2082
.
15.
Shin
,
M.
,
Yoshimoto
,
H.
, and
Vacanti
,
J. P.
, 2004, “
In Vivo Bone Tissue Engineering Using Mesenchymal Stem Cells on a Novel Electrospun Nanofibrous Scaffold
,”
Tissue Eng.
1076-3279,
10
(
1–2
), pp.
33
41
.
16.
Zeng
,
J.
,
Xu
,
X. Y.
,
Chen
,
X. S.
,
Liang
,
Q. Z.
,
Bian
,
X. C.
,
Yang
,
L. X.
, and
Jing
,
X. B.
, 2003, “
Biodegradable Electrospun Fibers for Drug Delivery
,”
J. Controlled Release
0168-3659,
92
(
3
), pp.
227
231
.
17.
Zeng
,
J.
,
Yang
,
L. X.
,
Liang
,
Q. Z.
,
Zhang
,
X. F.
,
Guan
,
H. L.
,
Xu
,
X. L.
,
Chen
,
X. S.
, and
Jing
,
X. B.
, 2005, “
Influence of the Drug Compatibility With Polymer Solution on the Release Kinetics of Electrospun Fiber Formulation
,”
J. Controlled Release
0168-3659,
105
(
1–2
), pp.
43
51
.
18.
Patel
,
A. C.
,
Li
,
S.
,
Yuan
,
J. M.
, and
Wei
,
Y.
, 2006, “
In Situ Encapsulation of Horseradish Peroxidase in Electrospun Porous Silica Fibers for Potential Biosensor Applications
,”
Nano Lett.
1530-6984,
6
(
5
), pp.
1042
1046
.
19.
Li
,
D.
,
Frey
,
M. W.
, and
Baeumner
,
A. J.
, 2006, “
Electrospun Polylactic Acid Nanofiber Membranes as Substrates for Biosensor Assemblies
,”
J. Membr. Sci.
0376-7388,
279
(
1–2
), pp.
354
363
.
20.
Ding
,
B.
,
Kim
,
J.
,
Miyazaki
,
Y.
, and
Shiratori
,
S.
, 2004, “
Electrospun Nanofibrous Membranes Coated Quartz Crystal Microbalance as Gas Sensor for NH3 Detection
,”
Sens. Actuators B
0925-4005,
101
(
3
), pp.
373
380
.
21.
Ding
,
B.
,
Yamazaki
,
M.
, and
Shiratori
,
S.
, 2005, “
Electrospun Fibrous Polyacrylic Acid Membrane-Based Gas Sensors
,”
Sens. Actuators B
0925-4005,
106
(
1
), pp.
477
483
.
22.
Kessick
,
R.
, and
Tepper
,
G.
, 2006, “
Electrospun Polymer Composite Fiber Arrays for the Detection and Identification of Volatile Organic Compounds
,”
Sens. Actuators B
0925-4005,
117
(
1
), pp.
205
210
.
23.
Tao
,
S.
,
Li
,
G.
, and
Yin
,
J.
, 2007, “
Fluorescent Nanofibrous Membranes for Trace Detection of TNT Vapor
,”
J. Mater. Chem.
0959-9428,
17
(
26
), pp.
2730
2736
.
24.
Grafe
,
T. H.
, and
Graham
,
K. M.
, 2003, “
Nanofiber Webs From Electrospinning
,”
Nonwovens in Filtration - Fifth International Conference
, Stuttgart, Germany, March 2003, pp.
1
5
.
26.
Liu
,
H. Q.
,
Kameoka
,
J.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
, 2004, “
Polymeric Nanowire Chemical Sensor
,”
Nano Lett.
1530-6984,
4
(
4
), pp.
671
675
.
27.
Liu
,
H. Q.
,
Reccius
,
C. H.
, and
Craighead
,
H. G.
, 2005, “
Single Electrospun Regioregular Poly(3-Hexylthiophene) Nanofiber Field-Effect Transistor
,”
Appl. Phys. Lett.
0003-6951,
87
(
25
), p.
253106
.
28.
Pinto
,
N. J.
,
Johnson
,
A. T.
,
Macdiarmid
,
A. G.
,
Mueller
,
C. H.
,
Theofylaktos
,
N.
,
Robinson
,
D. C.
, and
Miranda
,
F. A.
, 2003, “
Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field-Effect Transistor
,”
Appl. Phys. Lett.
0003-6951,
83
(
20
), pp.
4244
4246
.
29.
Gonzalez
,
R.
, and
Pinto
,
N. J.
, 2005, “
Electrospun Poly (3-Hexylthiophene-2,5-Diyl) Fiber Field Effect Transistor
,”
Synth. Met.
0379-6779,
151
(
3
), pp.
275
278
.
30.
Kameoka
,
J.
,
Verbridge
,
S. S.
,
Liu
,
H. Q.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
, 2004, “
Fabrication of Suspended Silica Glass Nanofibers From Polymeric Materials Using a Scanned Electrospinning Source
,”
Nano Lett.
1530-6984,
4
(
11
), pp.
2105
2108
.
31.
Czaplewski
,
D. A.
,
Verbridge
,
S. S.
,
Kameoka
,
J.
, and
Craighead
,
H. G.
, 2004, “
Nanomechanical Oscillators Fabricated Using Polymeric Nanofiber Templates
,”
Nano Lett.
1530-6984,
4
(
3
), pp.
437
439
.
32.
Czaplewski
,
D. A.
,
Kameoka
,
J.
,
Mathers
,
R.
,
Coates
,
G. W.
, and
Craighead
,
H. G.
, 2003, “
Nanofluidic Channels With Elliptical Cross Sections Formed Using a Nonlithographic Process
,”
Appl. Phys. Lett.
0003-6951,
83
(
23
), pp.
4836
4838
.
33.
Verbridge
,
S. S.
,
Edel
,
J. B.
,
Stavis
,
S. M.
,
Moran-Mirabal
,
J. M.
,
Allen
,
S. D.
,
Coates
,
G.
, and
Craighead
,
H. G.
, 2005, “
Suspended Glass Nanochannels Coupled With Microstructures for Single Molecule Detection
,”
J. Appl. Phys.
0021-8979,
97
(
12
), p.
124317
.
34.
Bellan
,
L. M.
,
Strychalski
,
E. A.
, and
Craighead
,
H. G.
, 2008, “
Nanochannels Fabricated in Polydimethylsiloxane Using Sacrificial Electrospun Polyethylene Oxide Nanofibers
,”
J. Vac. Sci. Technol. B
1071-1023,
26
(
5
), pp.
1728
1731
.
35.
Theron
,
A.
,
Zussman
,
E.
, and
Yarin
,
A. L.
, 2001, “
Electrostatic Field-Assisted Alignment of Electrospun Nanofibres
,”
Nanotechnology
0957-4484,
12
(
3
), pp.
384
390
.
36.
Czaplewski
,
D.
,
Kameoka
,
J.
, and
Craighead
,
H. G.
, 2003, “
Nonlithographic Approach to Nanostructure Fabrication Using a Scanned Electrospinning Source
,”
J. Vac. Sci. Technol. B
1071-1023,
21
(
6
), pp.
2994
2997
.
37.
Kameoka
,
J.
, and
Craighead
,
H. G.
, 2003, “
Fabrication of Oriented Polymeric Nanofibers on Planar Surfaces by Electrospinning
,”
Appl. Phys. Lett.
0003-6951,
83
(
2
), pp.
371
373
.
38.
Kameoka
,
J.
,
Czaplewski
,
D.
,
Liu
,
H. Q.
, and
Craighead
,
H. G.
, 2004, “
Polymeric Nanowire Architecture
,”
J. Mater. Chem.
0959-9428,
14
(
10
), pp.
1503
1505
.
39.
Kameoka
,
J.
,
Orth
,
R.
,
Yang
,
Y. N.
,
Czaplewski
,
D.
,
Mathers
,
R.
,
Coates
,
G. W.
, and
Craighead
,
H. G.
, 2003, “
A Scanning Tip Electrospinning Source for Deposition of Oriented Nanofibres
,”
Nanotechnology
0957-4484,
14
(
10
), pp.
1124
1129
.
40.
Fong
,
H.
,
Liu
,
W.
,
Wang
,
C. -S.
, and
Vaia
,
R. A.
, 2002, “
Generation of Electrospun Fibers of Nylon 6 and Nylon 6-Montmorillonite Nanocomposite
,”
Polymer
0032-3861,
43
(
3
), pp.
775
780
.
41.
Sun
,
D.
,
Chang
,
C.
,
Li
,
S.
, and
Lin
,
L.
, 2006, “
Near-Field Electrospinning
,”
Nano Lett.
1530-6984,
6
(
4
), pp.
839
842
.
42.
Teo
,
W. E.
, and
Ramakrishna
,
S.
, 2006, “
A Review on Electrospinning Design and Nanofibre Assemblies
,”
Nanotechnology
0957-4484,
17
(
14
), pp.
R89
R106
.
43.
Li
,
D.
,
Wang
,
Y.
, and
Xia
,
Y.
, 2003, “
Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays
,”
Nano Lett.
1530-6984,
3
(
8
), pp.
1167
1171
.
44.
Li
,
D.
,
Wang
,
Y. L.
, and
Xia
,
Y. N.
, 2004, “
Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
16
(
4
), pp.
361
366
.
45.
Li
,
D.
,
Ouyang
,
G.
,
Mccann
,
J. T.
, and
Xia
,
Y. N.
, 2005, “
Collecting Electrospun Nanofibers With Patterned Electrodes
,”
Nano Lett.
1530-6984,
5
(
5
), pp.
913
916
.
46.
Dalton
,
P. D.
,
Klee
,
D.
, and
Moller
,
M.
, 2005, “
Electrospinning With Dual Collection Rings
,”
Polymer
0032-3861,
46
(
3
), pp.
611
614
.
47.
Deitzel
,
J. M.
,
Kleinmeyer
,
J. D.
,
Hirvonen
,
J. K.
, and
Beck Tan
,
N. C.
, 2001, “
Controlled Deposition of Electrospun Poly(Ethylene Oxide) Fibers
,”
Polymer
0032-3861,
42
(
19
), pp.
8163
8170
.
48.
Bellan
,
L. M.
, and
Craighead
,
H. G.
, 2006, “
Control of an Electrospinning Jet Using Electric Focusing and Jet-Steering Fields
,”
J. Vac. Sci. Technol. B
1071-1023,
24
(
6
), pp.
3179
3183
.
49.
Li
,
D.
, and
Xia
,
Y.
, 2004, “
Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning
,”
Nano Lett.
1530-6984,
4
(
5
), pp.
933
938
.
50.
Zhang
,
Y. Z.
,
Wang
,
X.
,
Feng
,
Y.
,
Li
,
J.
,
Lim
,
C. T.
, and
Ramakrishna
,
S.
, 2006, “
Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(E-Caprolactone) Nanofibers for Sustained Release
,”
Biomacromolecules
1525-7797,
7
(
4
), pp.
1049
1057
.
51.
Mccann
,
J. T.
,
Marquez
,
M.
, and
Xia
,
Y.
, 2006, “
Melt Coaxial Electrospinning: A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers
,”
Nano Lett.
1530-6984,
6
(
12
), pp.
2868
2872
.
52.
Liu
,
Z.
,
Sun
,
D. D.
,
Guo
,
P.
, and
Leckie
,
J. O.
, 2007, “
An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning With a Side-by-Side Dual Spinneret Method
,”
Nano Lett.
1530-6984,
7
(
4
), pp.
1081
1085
.
53.
Bellan
,
L. M.
,
Alpha
,
C.
,
Corso
,
T.
,
Henion
,
J.
, and
Craighead
,
H. G.
, 2008, “
Chip-Based Microfabricated Electrospinning Nozzles
,”
J. Vac. Sci. Technol. B
1071-1023,
26
(
6
), pp.
2539
2542
.
54.
Theron
,
S. A.
,
Yarin
,
A. L.
,
Zussman
,
E.
, and
Kroll
,
E.
, 2005, “
Multiple Jets in Electrospinning: Experiment and Modeling
,”
Polymer
0032-3861,
46
(
9
), pp.
2889
2899
.
55.
Yarin
,
A. L.
, and
Zussman
,
E.
, 2004, “
Upward Needleless Electrospinning of Multiple Nanofibers
,”
Polymer
0032-3861,
45
(
9
), pp.
2977
2980
.
56.
Jirsak
,
O.
,
Sanetrnik
,
F.
,
Lukas
,
D.
,
Kotek
,
V.
,
Martinova
,
L.
, and
Chaloupek
,
J.
, 2005, “
A Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying Out the Method
,” Patent WO 2005/024101 A1.
57.
Li
,
D.
, and
Xia
,
Y.
, 2003, “
Fabrication of Titania Nanofibers by Electrospinning
,”
Nano Lett.
1530-6984,
3
(
4
), pp.
555
560
.
58.
Larrondo
,
L.
, and
St John Manley
,
R.
, 1981, “
Electrostatic Fiber Spinning From Polymer Melts. I. Experimental Observations on Fiber Formation and Properties
,”
J. Polym. Sci., Polym. Phys. Ed.
0098-1273,
19
(
6
), pp.
909
920
.
59.
Lyons
,
J.
,
Li
,
C.
, and
Ko
,
F.
, 2004, “
Melt-Electrospinning Part I: Processing Parameters and Geometric Properties
,”
Polymer
0032-3861,
45
(
22
), pp.
7597
7603
.
60.
Gupta
,
P.
,
Trenor
,
S. R.
,
Long
,
T. E.
, and
Wilkes
,
G. L.
, 2004, “
In Situ Photo-Cross-Linking of Cinnamate Functionalized Poly(Methyl Methacrylate-Co-2-Hydroxyethyl Acrylate) Fibers During Electrospinning
,”
Macromolecules
0024-9297,
37
(
24
), pp.
9211
9218
.
61.
Kim
,
S. H.
,
Kim
,
S. -H.
,
Nair
,
S.
, and
Moore
,
E.
, 2005, “
Reactive Electrospinning of Cross-Linked Poly(2-Hydroxyethyl Methacrylate) Nanofibers and Elastic Properties of Individual Hydrogel Nanofibers in Aqueous Solutions
,”
Macromolecules
0024-9297,
38
(
9
), pp.
3719
3723
.
62.
Bellan
,
L. M.
,
Coates
,
G. W.
, and
Craighead
,
H. G.
, 2006, “
Poly(Dicyclopentadiene) Submicron Fibers Produced by Electrospinning
,”
Macromol. Rapid Commun.
1022-1336,
27
(
7
), pp.
511
515
.
You do not currently have access to this content.