Common part failures in tube hydroforming include wrinkling, premature fracture, and unacceptable part surface quality. Some of these failures are attributed to the inability to optimize tribological conditions. There has been an increasing demand for the development of effective lubricants for tube hydroforming due to widespread application of this process. This paper presents an analytical model of the guiding zone tribotest commonly used to evaluate lubricant performance for tube hydroforming. Through a mechanistic approach, a closed-form solution for the field variables contact pressure, effective stress/strain, longitudinal stress/strain, and hoop stress can be computed. The analytical model was validated by the finite element method. In addition to determining friction coefficient, the expression for local state of stress and strain on the tube provides an opportunity for in-depth study of the behavior of lubricant and associated lubrication mechanisms. The model can aid as a quick tool for iterating geometric variables in the design of a guiding zone, which is an integral part of tube hydroforming tooling.

1.
Koc
,
M.
, and
Altan
,
T.
, 2001, “
An Overall Review of the Tube Hydroforming (THF) Technology
,”
J. Mater. Process. Technol.
0924-0136,
108
, pp.
384
393
.
2.
Siegert
,
K.
,
Häussermann
,
M.
,
Lösch
,
B.
, and
Rieger
,
R.
, 2000, “
Recent Developments in Hydroforming Technology
,”
J. Mater. Process. Technol.
0924-0136,
98
(
2
), pp.
251
258
.
3.
Dohmann
,
F.
, and
Hartl
,
Ch.
, 1996, “
Hydroforming—A Method to Manufacture Lightweight Parts
,”
J. Mater. Process. Technol.
0924-0136,
60
, pp.
669
676
.
4.
Nguyen
,
B. N.
,
Johson
,
K.
, and
Khaleel
,
M. A.
, 2003, “
Analysis of Tube Hydroforming by Means of an Inverse Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
369
377
.
5.
Asnafi
,
N.
, and
Skogsgårdh
,
A.
, 2000, “
Theoretical and Experimental Analysis of Stroke-Controlled Tube Hydroforming
,”
Mater. Sci. Eng., A
0921-5093,
279
(
1–2
), pp.
95
110
.
6.
Asnafi
,
N.
, 1999, “
Analytical Modelling of Tube Hydroforming
,”
Thin-Walled Struct.
0263-8231,
34
(
4
), pp.
295
330
.
7.
Ngaile
,
G.
,
Jaeger
,
S.
, and
Altan
,
T.
, 2004, “
Lubrication in Tube Hydroforming (THF) Part I: Lubrication Mechanisms and Development of Model Tests to Evaluate Lubricants and Die Coatings in the Transition and Expansion Zones
,”
J. Mater. Process. Technol.
,
146
, pp.
108
115
. 0924-0136
8.
Prier
,
M.
, and
Schmoeckel
,
D.
, 1999, “
Tribology of Internal High Pressure Forming
,” MAT-INFO Werksstoff-Informationosgesellschaft mbH, Humburger Allee 26, D-60486 Frankfurt, pp.
379
390
.
9.
Ngaile
,
G.
,
Jaeger
,
S.
, and
Altan
,
T.
, 2004, “
Lubrication in Tube Hydroforming (THF) Part II: Performance Evaluation of Lubricants using LDH Test and Pear Shaped Tube Expansion Test
,”
J. Mater. Process. Technol.
0924-0136,
146
, pp.
116
123
.
10.
Dalton
,
G.
, 1999, “
The Role of Lubricants in Hydroforming
,”
Proceedings of the Automotive Tube Conference
, Dearborn, MI, Apr. 26–27.
11.
Koc
,
M.
, 2003, “
Tribological Issues in the Tube Hydroforming Process—Selection of a Lubricant for Robust Process Conditions for an Automotive Structural Frame
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
484
492
.
12.
Gariety
,
M.
, 2003, “
Enhancement of Tribological Conditions in Tube Hydroforming and the Viability of Twist Compression Test for Screening Tube Hydroforming Lubricants
,” MS thesis, The Ohio State University, Columbus.
13.
Ngaile
,
G.
,
Federico
,
V.
,
Tibari
,
K.
, and
Altan
,
T.
, 2001, “
Lubrication in Tube Hydroforming (THF)
,”
Trans. NAMRI/SME
1047-3025,
XXIX
, pp.
51
57
.
14.
Ngaile
,
G.
, and
Altan
,
T
, 2001, “
Practical Methods for Evaluation Lubricants for Tube Hydroforming
,”
Hydroforming Journal
, pp.
8
12
.
15.
Plancak
,
M.
,
Vollertsen
,
F.
, and
Woitschig
,
J.
, 2005, “
Analysis, Finite Element Simulation and Experimental Investigation of Friction in Tube Hydroforming
,”
J. Mater. Process. Technol.
,
170
, pp.
220
228
. 0924-0136
16.
Vollersten
,
F.
, and
Plancak
,
M.
, 2002, “
On Possibilities for the Determination of the Coefficient of Friction in Hydroforming of Tubes
,”
J. Mater. Process. Technol.
,
125-126
, pp.
412
420
. 0924-0136
17.
Imaninejad
,
M.
, and
Subhash
,
G.
, 2005, “
Proportional Loading of Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
0308-0161,
82
, pp.
129
135
.
18.
Jahed
,
H.
,
Lambert
,
S. B.
, and
Dubey
,
R. N.
, 1998, “
Total Deformation Theory for Non-Proportional Loading
,”
Int. J. Pressure Vessels Piping
0308-0161,
75
, pp.
633
642
.
19.
Budiansky
,
B.
, 1959, “
A reassessment of Deformation Theories of Plasticity
,”
ASME J. Appl. Mech.
0021-8936,
26
, pp.
259
264
.
20.
Varma
,
N. S. P.
, and
Narasimhan
,
R.
, 2008, “
A Numerical Study of the Effect of Loading Conditions on Tubular Hydroforming
,”
J. Mater. Process. Technol.
,
196
, pp.
174
183
. 0924-0136
21.
Hwang
,
Y. M.
and
Huang
,
L. S.
, 2005, “
Friction Tests in Tube Hydroforming
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
219
, pp.
587
593
.
You do not currently have access to this content.