This paper presents a novel dynamic optimization framework for the grinding process in batch production. The grinding process exhibits time-varying characteristics due to the progressive wear of the grinding wheel. Nevertheless, many existing frameworks for the grinding process can optimize only 1 cycle at a time, thereby generating suboptimal solutions. Moreover, dynamic scheduling of dressing operations in response to process feedback would require significant human intervention with existing methods. We propose a unique dynamic programming–evolution strategy framework to optimize a series of grinding cycles depending on the wheel condition and batch size. In the proposed framework, a dynamic programming module dynamically determines the frequency and parameter of wheel dressing while the evolution strategy locates the optimal operating parameters of each cycle subject to the constraints on the operating ranges and part quality. Case studies based on experimental data are conducted to demonstrate the advantages of the proposed method over conventional approaches.

1.
Wen
,
X.
,
Tay
,
A. A. O.
, and
Nee
,
A. Y. C.
, 1992, “
Micro-Computer-Based Optimization of the Surface Grinding Process
,”
J. Mater. Process. Technol.
0924-0136,
29
, pp.
75
90
.
2.
Liao
,
T. W.
, and
Chen
,
L. J.
, 1994, “
A Neural Network Approach for Grinding Processes: Modeling and Optimization
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
(
7
), pp.
919
937
.
3.
Venk
,
S.
,
Govind
,
R.
, and
Merchant
,
E.
, 1990, “
An Expert System Approach to Optimization of the Centerless Grinding Process
,”
CIRP Ann.
0007-8506,
39
(
1
), pp.
489
492
.
4.
Sakakura
,
M.
, and
Inasaki
,
I.
, 1992, “
Neural Network Approach to the Decision-Making Process for Grinding Operations
,”
CIRP Ann.
0007-8506,
41
(
1
), pp.
353
356
.
5.
Sakakura
,
M.
, and
Inasaki
,
I.
, 1993, “
Intelligent Data Base for Grinding Operations
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
379
382
.
6.
Lee
,
C. W.
, and
Shin
,
Y. C.
, 1999, “
Improved Generalized Intelligent Grinding Advisory System
,”
Proceedings of the 1999 ASME IMECE
,
ASME
,
New York
, MED-Vol.
10
, pp.
473
480
.
7.
Lee
,
C. W.
, and
Shin
,
Y. C.
, 2000, “
Evolutionary Modeling and Optimization of Grinding Processes
,”
Int. J. Prod. Res.
0020-7543,
38
(
12
), pp.
2787
2813
.
8.
Lee
,
C. W.
,
Choi
,
T.
, and
Shin
,
Y. C.
, 2003, “
Intelligent Model-Based Optimization of the Surface Grinding Process for Heat-Treated 4140 Steel Alloys With Aluminum Oxide Grinding Wheels
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
1
), pp.
65
76
.
9.
Zhang
,
J.
,
Liang
,
S. Y.
,
Yao
,
J.
,
Chen
,
J. M.
, and
Hunag
,
J. L.
, 2006, “
Evolutionary Optimization of Machining Processes
,”
J. Intell. Manuf.
,
17
, pp.
203
215
. 0956-5515
10.
Amitay
,
G.
,
Malkin
,
S.
, and
Korean
,
Y.
, 1981, “
Adaptive Control Optimization of Grinding
,”
ASME J. Eng. Ind.
0022-0817,
103
, pp.
103
108
.
11.
Xiao
,
G.
, and
Malkin
,
S.
, 1996, “
On-Line Optimization for Internal Plunge Grinding
,”
CIRP Ann.
0007-8506,
45
(
1
), pp.
287
292
.
12.
Ivester
,
R.
,
Danai
,
K.
, and
Malkin
,
S.
, 1997, “
Cycle-Time Reduction in Machining by Recursive Constraint Bounding
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
201
207
.
13.
Dong
,
S.
,
Danai
,
K.
,
Malkin
,
S.
, and
Deshmukh
,
A.
, 2004, “
Continuous Optimal Infeed Control for Cylindrical Plunge Grinding, Part 1: Methodology
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
327
333
.
14.
Bertsekas
,
D. P.
, 2005,
Dynamic Programming and Optimal Control
, Vol.
1
,
3rd ed.
,
Prentice-Hall
,
Reading, NJ
.
15.
Lee
,
C. W.
, 2000, “
Intelligent Modeling and Optimization of Grinding Processes
,” Ph.D. thesis, Purdue University, Purdue, West Lafayette, IN.
16.
Malkin
,
S.
, 1989,
Grinding Technology: Theory and Application of Machining With Abrasives
,
Society of Manufacturing Engineers
,
Reading, MI
.
17.
Malkin
,
S.
, 1976, “
Selection of Operating Parameters in Surface Grinding of Steels
,”
ASME J. Eng. Ind.
0022-0817,
98
, pp.
56
62
.
18.
Lee
,
C. W.
, 2008, “
Estimation Strategy for a Series of Grinding Cycles in Batch Production
,”
IEEE Trans. Control Syst. Technol.
,
16
(
3
), pp.
556
561
. 1063-6536
You do not currently have access to this content.