Laser assisted mechanical micromachining is a process that utilizes highly localized thermal softening of the material by continuous wave laser irradiation applied simultaneously and directly in front of a miniature cutting tool in order to produce micron scale three-dimensional features in difficult-to-machine materials. The hybrid process is characterized by lower cutting forces and deflections, fewer tool failures, and potentially higher material removal rates. The desktop-sized machine used to implement this process has a finite stiffness and deflects under the influence of the cutting forces. The deflections can be of the same order of magnitude as the depth of cut in some cases, thereby having a negative effect on the dimensional accuracy of the micromachined feature. As a result, selection of the laser and cutting parameters that yield the desired reduction in cutting forces and deflection, and consequently an improvement in dimensional accuracy, requires a reliable cutting force model. This paper describes a cutting force model for the laser-assisted microgrooving process. The model accounts for the effect of elastic deflection of the machine X-Y stages on the forces and accuracy of the micromachined feature. The model combines an existing slip-line field based force model with a finite element based thermal model of laser heating and a constitutive material flow stress model to account for thermal softening. Experiments are carried out on H-13 steel (42 HRC (hardness measured on the Rockwell ‘C’ scale)) to validate the force model. The effects of process parameters, such as laser power and cutting speed, on the forces are also analyzed. The model captures the effect of thermal softening and indicates a 66% reduction in the shear flow stress at 35 W laser power. The cutting force and depth of cut prediction errors are less than 20% and 10%, respectively, for most of the cases examined.

1.
Masuzawa
,
T.
, and
Tonshoff
,
H. K.
, 1997, “
Three-Dimensional Micromachining by Machine Tools
,”
CIRP Ann.
0007-8506,
46
(
2
), pp.
621
628
.
2.
Cox
,
D.
,
Newby
,
G.
,
Park
,
H. W.
, and
Liang
,
S. Y.
, 2004, “
Performance Evaluation of a Miniaturized Machining Center for Precision Manufacturing
,” ASME Paper No. IMECE2004-62186, pp.
1
6
.
3.
Rajagopal
,
S.
,
Plankenhorn
,
D. J.
, and
Hill
,
V. L.
, 1982, “
Machining Aerospace Alloys With the Aid of a 15 kW Laser
,”
Journal of Applied Metalworking
,
2
(
3
), pp.
170
184
.
4.
König
,
W.
, and
Zaboklicki
,
A. K.
, 1993, “
Laser-Assisted Hot Machining of Ceramics and Composite Materials
,”
Proceedings of the International Conference on Machining of Advanced Materials
, NIST Special Publication No. 847, pp.
455
463
.
5.
Klocke
,
F.
, and
Zaboklicki
,
A.
, 1998, “
Laser-Assisted Turning of Ceramics
,”
Machining of Ceramics and Composites
,
Dekker
,
New York
, pp.
551
574
.
6.
Lei
,
S.
, and
Shin
,
Y. C.
, 2001, “
Experimental Investigation of Thermo-Mechanical Characteristics in Laser-Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
639
646
.
7.
Rozzi
,
J. C.
,
Pfefferkorn
,
F. E.
, and
Shin
,
Y. C.
, 2000, “
Experimental Evaluation of the Laser Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
666
670
.
8.
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2004, “
Laser Assisted Machining of Magnesia-Partially-Stabilized Zirconia
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
42
51
.
9.
Tian
,
Y.
, and
Shin
,
Y. C.
, 2007, “
Multiscale Finite Element Modeling of Silicon Nitride Ceramics Undergoing Laser-Assisted Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
287
295
.
10.
Skvarenina
,
S.
, and
Shin
,
Y. C.
, 2006, “
Laser Assisted Machining of Compacted Graphite Iron
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
1
), pp.
7
17
.
11.
Anderson
,
M.
,
Patwa
,
R.
, and
Shin
,
Y. C.
, 2006, “
Laser Assisted Machining of Inconel 718 With an Economic Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
14
), pp.
1879
1891
.
12.
Dumitrescu
,
P.
,
Koshy
,
P.
,
Stenekes
,
J.
, and
Elbestawi
,
M. A.
, 2006, “
High-Power Diode Laser Assisted Hard Turning of AISI D2 Tool Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
2009
2016
.
13.
Singh
,
R.
, and
Melkote
,
S. N.
, 2005, “
Preliminary Investigation of Laser Assisted Mechanical Micromachining
,”
Proceedings of the Second JSME/ASME International Conference on Materials and Processing
, Seattle, WA, pp.
1
6
.
14.
Singh
,
R.
, and
Melkote
,
S. N.
, 2005, “
Experimental Characterization of Laser-Assisted Mechanical Micromachining (LAMM) Process
,” ASME Paper No. IMECE2005-81350, pp.
1
8
.
15.
Singh
,
R.
, and
Melkote
,
S. N.
, 2007, “
Characterization of a Hybrid Laser-Assisted Mechanical Micromachining (LAMM) Process for a Difficult-to-Machine Material
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
1139
1150
. 0890-6955
16.
Jeon
,
Y.
, and
Pfefferkorn
,
F. E.
, 2008, “
Effect of Laser Preheating the Workpiece on Micro-End Milling of Metals
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
1
), p.
011004
.
17.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
, 2000, “
A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
384
390
.
18.
Singh
,
R.
,
Alberts
,
M. J.
, and
Melkote
,
S. N.
, 2006, “
Characterization of Heat Affected Zone in a Laser-Assisted Mechanical Micromachining (LAMM) Process for Difficult-to-Machine Materials
,”
Proceedings of the First International Conference on Micro Manufacturing
, Urbana, IL, pp.
1
6
.
19.
Singh
,
R.
,
Alberts
,
M. J.
, and
Melkote
,
S. N.
, 2008, “
Characterization and Prediction of the Heat Affected Zone in a Laser-Assisted Mechanical Micromachining (LAMM) Process
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
994
1004
. 0890-6955
20.
Yan
,
H.
,
Hua
,
J.
, and
Shivpuri
,
R.
, 2007, “
Flow Stress of AISI H13 Die Steel in Hard Machining
,”
Mater. Des.
,
28
, pp.
272
277
. 0264-1275
21.
Fang
,
N.
, and
Wu
,
Q.
, 2004, “
A New Methodology for Modeling Material Constitutive Behavior Using an Orthogonal Machining Test
,”
Trans. NAMRI/SME
,
32
, pp.
95
102
. 0264-1275
22.
Adibi-Sadeh
,
A. H.
,
Madhavan
,
V.
, and
Bahr
,
B.
, 2001, “
Extension of Oxley’s Analysis of Machining to Use Johnson–Cook Material Model
,” ASME Paper No. IMECE2001/MED-23320, pp.
1
10
.
23.
Challen
,
J. M.
, and
Oxley
,
P. L. B.
, 1984, “
Slip-Line Fields for Explaining the Mechanics of Polishing and Related Processes
,”
Int. J. Mech. Sci.
0020-7403,
26
(
6–8
), pp.
403
418
.
24.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 1998, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
4
), pp.
693
699
.
25.
Basuray
,
P. K.
,
Misra
,
B. K.
, and
Lal
,
G. K.
, 1977, “
Transition From Ploughing to Cutting During Machining With Blunt Tools
,”
Wear
0043-1648,
43
, pp.
341
349
.
26.
Komanduri
,
R.
, 1971, “
Some Aspects of Machining With Negative Rake Angle Tools Simulating Grinding
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
11
, pp.
223
233
.
27.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
, 2000, “
A Study of Apparent Negative Rake Angle and Its Effects on Shear Angle During Orthogonal Cutting With Edge-Radiused Tools
,”
Trans. NAMRI/SME
1047-3025,
28
, pp.
197
202
.
28.
Oxley
,
P. L. B.
, 1989,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood
,
Chichester
, pp.
220
222
.
29.
Hansen
,
N.
, and
Huang
,
X.
, 1998, “
Microstructure and Flow Stress of Polycrystals and Single Crystals
,”
Acta Mater.
1359-6454,
46
(
5
), pp.
1827
1836
.
30.
Hughes
,
D. A.
, and
Hansen
,
N.
, 2000, “
Microstructure and Strength of Nickel at Large Strains
,”
Acta Mater.
1359-6454,
48
(
11
), pp.
2985
3004
.
31.
Li
,
B. L.
,
Cao
,
W. Q.
,
Liu
,
Q.
, and
Liu
,
W.
, 2003, “
Flow Stress and Microstructure of the Cold-Rolled IF-Steel
,”
Mater. Sci. Eng., A
0921-5093,
356
(
1–2
), pp.
37
42
.
32.
Subbiah
,
S.
, and
Melkote
,
S. N.
, 2006, “
The Constant Force Component Due to Material Separation and Its Contribution to the Size Effect in Specific Cutting Energy
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
811
815
.
33.
Liu
,
K.
, and
Melkote
,
S. N.
, 2006, “
Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
730
738
.
34.
Singh
,
R.
, 2007, “
Laser-Assisted Mechanical Micromachining of Hard-To-Machine Materials
,” Ph.D. thesis, Georgia Institute of Technology, pp.
152
155
.
You do not currently have access to this content.