Abrasive waterjet peening (AWJP) has been conceived as a new surface treatment process capable of achieving desired changes in surface texture, chemistry, and residual stress simultaneously. In the present investigation, the influence of elastic prestress on the residual stress resulting from AWJP was studied. Treatments were conducted on steel, as well as nickel and titanium alloy targets subjected to an elastic prestress ranging from 0% to 75% of the material’s yield strength. The results showed that a tensile elastic prestress increases the surface residual stress and the depth of the compressive stress zone. The surface residual stress in each metal increased nonuniformly with magnitude of prestress; the maximum surface residual stress was obtained at an applied prestress between 45% and 60% of the substrate yield strength. Overall, the increases in surface stress and depth that were obtained reached 100% and 50%, respectively. There were no changes to the surface texture caused by the prestress. According to results of this study, application of an elastic prestress can serve as an effective method for improving characteristics of the residual stress field in components treated using AWJP.

1.
Bayoumi
,
M. R.
, and
Abdellatif
,
A. K.
, 1995, “
Effect of Surface Finish on Fatigue Strength
,”
Eng. Fract. Mech.
,
51
(
5
), pp.
861
870
. 0013-7944
2.
Arola
,
D.
, and
Williams
,
C. L.
, 2002, “
Estimating Fatigue Stress Concentration Factors of Machined Surfaces
,”
Int. J. Fatigue
0142-1123,
24
(
9
), pp.
923
930
.
3.
Plumtree
,
A.
, and
O’Connor
,
B. P. D.
, 1991, “
Influence of Microstructure on Short Fatigue Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
14
(
2–3
), pp.
171
184
.
4.
Taylor
,
D.
, and
Clancy
,
O. M.
, 1991, “
The Fatigue Performance of Machined Surfaces
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
14
(
2-3
), pp.
329
336
.
5.
Haywood
,
R. B.
, 1962,
Designing Against Fatigue of Metals
,
Reinhold
,
New York
.
6.
Osgood
,
C. C.
, 1982,
Fatigue Design
,
2nd ed.
,
Pergamon
,
New York
.
7.
Sun
,
L.
,
Berndt
,
C. C.
,
Gross
,
K. A.
, and
Kucuk
,
A.
, 2001, “
Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review
,”
J. Biomed. Mater. Res.
0021-9304,
58
(
5
), pp.
570
592
.
8.
Bourne
,
R. B.
,
Rorabeck
,
C. H.
,
Burkart
,
B. C.
, and
Kirk
,
P. G.
, 1994, “
Ingrowth Surfaces: Plasma Spray Coating of Titanium Alloy Hip Replacements
,”
Clin. Orthop. Relat. Res.
,
298
, pp.
37
46
. 0009-921X
9.
Rizzi
,
G.
,
Scrivani
,
A.
,
Fini
,
M.
, and
Giardino
,
R.
, 2004, “
Biomedical Coatings to Improve Tissue-Biomaterial Interface
,”
Int. J. Artif. Organs
,
27
(
8
), pp.
649
657
. 0391-3988
10.
Kohn
,
D. H.
, and
Ducheyne
,
P.
, 1990, “
A Parametric Study of the Factors Affecting the Fatigue Strength of Porous Coated Ti–6A1–4V Implant Alloy
,”
J. Biomed. Mater. Res.
,
24
(
11
), pp.
1483
1501
. 0021-9304
11.
Yue
,
S.
,
Pilliar
,
R. M.
, and
Weatherley
,
G. C.
, 1984, “
The Fatigue Strength of Porous-Coated Ti–6%Al–4%V Implant Alloy
,”
J. Biomed. Mater. Res.
0021-9304,
18
(
9
), pp.
1043
1058
.
12.
Brown
,
S. R.
,
Turner
,
I. G.
, and
Reiter
,
H.
, 1994, “
Residual Stress Measurement in Thermal Sprayed Hydroxyapatite Coatings
,”
J. Mater. Sci. Mater. Med.
,
5
(
9–10
), pp.
756
759
. 0957-4530
13.
Eberhardt
,
A. W.
,
Kim
,
B. S.
,
Rigney
,
E. D.
,
Kutner
,
G. L.
, and
Harte
,
C. R.
, 1995, “
Effects of Precoating Surface Treatments on Fatigue of Ti–6Al–4V
,”
J. Appl. Biomater.
,
6
(
3
), pp.
171
174
. 1045-4861
14.
Arola
,
D.
, and
McCain
,
M. L.
, 2003, “
Method and Apparatus for Abrasive Fluid Jet Peening Surface Treatment
,” U.S. Patent No. 852,779.
15.
Arola
,
D.
,
McCain
,
M. L.
,
Kunaporn
,
S.
, and
Ramulu
,
M.
, 2001, “
Waterjet and Abrasive Waterjet Treatment of Titanium: A Comparison of Surface Texture and Residual Stress
,”
Wear
0043-1648,
249
, pp.
943
950
.
16.
Arola
,
D.
,
Alade
,
A. E.
, and
Weber
,
W.
, 2006, “
Improving the Fatigue Strength of Metals Using Abrasive Waterjet Peening
,”
Mach. Sci. Technol.
1091-0344,
10
, pp.
197
218
.
17.
Arola
,
D.
, and
McCain
,
M. L.
, 2000, “
Abrasive Waterjet Peening: A New Method of Surface Preparation for Metal Orthopedic Implants
,”
J. Biomed. Mater. Res.
0021-9304,
53
(
5
), pp.
536
546
.
18.
Arola
,
D.
, and
Hall
,
C. L.
, 2004, “
Parametric Effects on Particle Deposition in Abrasive Waterjet Surface Treatments
,”
Mach. Sci. Technol.
1091-0344,
8
(
2
), pp.
171
192
.
19.
Wagner
,
L.
, and
Luetjering
,
G.
, 1996, “
Influence of Shot Peening on the Fatigue Behavior of Titanium Alloys
,”
Proceedings of the First International Conference on Shot Peening
, Paris, France, pp.
453
460
.
20.
Wick
,
A.
,
Holzapfel
,
H.
,
Shulze
,
V.
, and
Vohringer
,
O.
, 1999, “
Effects of Shot Peening Parameters on the Surface Characteristics of Differently Heat Treated AISI 4140
,”
Proceedings of Seventh International Conference on Shot Peening
, Warsaw, Poland, pp.
42
53
.
21.
Farrahi
,
G. H.
,
Lebrun
,
J. L.
, and
Couratin
,
D.
, 1995, “
Effect of Shot Peening on Residual Stress and Fatigue Life of Spring Steel
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
(
2
), pp.
211
220
.
22.
Xu
,
J. C.
,
Zhang
,
D. Q.
, and
Shen
,
B. J.
, 1982, “
Fatigue Strength and Fracture Morphology of Leaf Spring Steel After Prestressed Shot Peening
,”
Proceedings of the First International Conference on Shot Peening
, Paris, France, pp.
367
371
.
23.
Barrett
,
C. F.
, and
Todd
,
R.
, 1984, “
Investigation of the Effects of Elastic Pre-Stressing Technique on Magnitude of Compressive Residual Stress Induced by Shot Peen Forming of Thick Aluminum Plates
,”
Proceedings of the Second International Conference on Shot Peening
, Chicago, pp.
15
21
.
24.
Sadasivam
,
B.
, and
Arola
,
D.
, 2006, “
Application of Prestress in Abrasive Waterjet Peening
,”
Proceedings of the International Conference on Advances in Materials and Processing Technologies
, Las Vegas, NV, Paper No. NTI2 355.
25.
Sadasivam
,
B.
,
Hizal
,
A.
, and
Arola
,
D.
, 2007, “
Abrasive Waterjet Peening With Elastic Prestress: Subsurface Residual Stress Distribution
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA, Vol.
3
, pp.
471
475
.
26.
Treuting
,
R. G.
, and
Read
,
W. T.
, Jr.
, 1951, “
A Mechanical Determination of Biaxial Residual Stress in Sheet Materials
,”
J. Appl. Phys.
0021-8979,
22
(
2
), pp.
130
134
.
27.
Flavenot
,
J. F.
, 1996,
Handbook of Measurement of Residual Stresses
,
The Fairmont
,
Lilburn, GA
, pp,
35
48
.
28.
Lira
,
H. I.
,
Vial
,
C.
, and
Robinson
,
K.
, 1997, “
The ESPI Measurement of the Residual Stress Distribution in Chemically Etched Cold-Rolled Metallic Sheets
,”
Meas. Sci. Technol.
0957-0233,
8
(
11
), pp.
1250
1257
.
29.
Williams
,
K. R.
, and
Muller
,
R. S.
, 1996, “
Etch Rates for Micromachining Processing
,”
J. Microelectromech. Syst.
1057-7157,
5
(
4
), pp.
256
269
.
30.
Tatton
,
R. J. D.
, 1986, “
Shot Peen-Forming
,”
Proceedings of Impact Surface Treatment
, Bedford, England, pp.
134
143
.
31.
Friese
,
A.
,
Lohmar
,
J.
, and
Wustefeld
,
F.
, 2002, “
Current Applications of Advanced Peen Forming Implementation
,”
Shot Peening
,
Wiley
,
Germany
, pp.
53
57
.
32.
Martin
,
U.
,
Altenberger
,
I.
,
Scholtes
,
B.
,
Kremmer
,
K.
, and
Oettel
,
H.
, 1998, “
Cyclic Deformation and Near Surface Microstructures of Normalized Shot Peened Steel SAE 1045
,”
Mater. Sci. Eng., A
,
246
(
1–2
), pp.
69
80
. 0921-5093
33.
Yan
,
W.
,
Fang
,
L.
,
Sun
,
K.
, and
Xu
,
Y.
, 2007, “
Effect of Surface Work Hardening on Wear Behavior of Hadfield Steel
,”
Mater. Sci. Eng., A
,
460–461
, pp.
542
549
. 0921-5093
34.
Torres
,
M. A. S.
,
Nascimento
,
M. P.
, and
Voorwald
,
H. J. C.
, 2002, “
Consideration of Shot Peening Treatment Applied to a High Strength Aeronautical Steel With Different Hardness
,”
Shot Peening
,
Wiley
,
Germany
, pp.
37
43
.
35.
Gao
,
Y.
,
Yao
,
M.
, and
Li
,
J.
, 2002, “
An Analysis of Residual Stress Fields Caused by Shot Peening
,”
Metall. Mater. Trans. A
,
33
(
6
), pp.
1775
1778
. 1073-5623
You do not currently have access to this content.