Proper temperature control is essential for producing superior quality components and yielding high production rates in high temperature manufacturing processes. Due to the closure of machine tools such as casting dies during production, it is usually very difficult to monitor their local surface temperatures without destructively inserting thermal sensors into them. However, the measurement of cooling water temperature at the coolant outlet is relatively unproblematic. This work demonstrates that there is a correlation between these two temperatures. As an example, the effect of the local surface temperature of a casting die on the cooling water outlet temperature is analyzed from a laboratory die casting process simulator. Based on the system identification theory, a control-oriented linear time-invariant model has been developed, which correlates the local die temperature to the cooling water outlet temperature. The model enables the prediction of the local die temperature with the measurements of the cooling water temperature. Thus, it provides an alternative approach other than the destructive sensing method to acquire the local die temperatures, and the model could be applied to design a real-time temperature control system for die cooling process.

1.
Hu
,
H.
,
Chen
,
F.
,
Chen.
,
X.
,
Chu
,
Y.
, and
Cheng
,
P.
, 2004, “
Effect of Cooling Water Flow Rates on Local Temperatures and Heat Transfer of Casting Dies
,”
J. Mater. Process. Technol.
0924-0136,
148
, pp.
439
451
.
2.
Bounds
,
S.
,
Davey
,
K.
and
Hinduja
,
S.
, 2000, “
An Experimental and Numerical Investigation Into the Thermal Behavior of the Pressure Die Casting Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
90
99
.
3.
Clark
,
L. D.
,
Rasgado
,
M. T. A.
,
Davey
,
K.
, and
Hinduja
,
S.
, 2006, “
Experimental Investigation Into the Thermal Behavior of Copper-Alloyed Dies in Pressure Die Casting
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
844
859
.
4.
Booth
,
S. E.
, 1970, “
A Die Temperature Cycle Time Controller
,”
Proceedings of the Sixth SDCE International Die Casting Congress
, p.
54
.
5.
Larkin
,
R. J.
, 1970, “
Automatic Control Die Temperature in Zinc Die Casting
,”
Proceedings of the Sixth SDCE International Die Casting Congress
, p.
62
.
6.
Dent
,
B. K.
, and
Fifer
,
R.
, 1972, “
Production Operation with the Llzro-Battelle Die Temperature Controller
,”
Proceedings of the Seventh SDCE International Die Casting Congress
, p.
5572
.
7.
Peterson
,
A. P.
, 1975, “
Thermocycling Control of Aluminum Die Casting Machines
,”
Proceedings of the Eighth SDCE International Die Casting Congress
, Paper No. B-t75-024.
8.
Reddy
,
R.
, 1975, “
Temperature Control of Die Casting Dies
,”
Proceedings of the Eighth SDCE International Die Casting Congress
, Paper No. B-t75-025.
9.
Bishenden
,
W.
, and
Bhoia
,
R.
, 1999, “
Die Temperature Control
,”
Proceedings of the Transactions of 20th International Die Casting Congress
, pp.
161
164
.
10.
Hu
,
H.
,
Chen
,
F.
,
Chen.
,
X.
,
Chu
,
Y.
, and
Cheng
,
P.
, 2002, “
Development of a Computer-Based Data Acquisition and Control System for Die Casting Processes
,”
Proceedings of the EPD Congress
,
TMS
,
California
, pp.
439
451
.
11.
Yang
,
T.
,
Hu
,
H.
,
Chen
,
X.
,
Chu
,
Y.
, and
Cheng
,
P.
, 2007, “
Performance of a Real-Time Local Thermal Management System for Casting Dies With Multiple Cooling Channels
,”
International Journal of Manufacturing Research
,
2
, pp.
74
87
.
12.
Yang
,
T.
,
Hu
,
H.
,
Chen
,
X.
,
Chu
,
Y.
, and
Cheng
,
P.
, 2007, “
Thermal Analysis of Casting Dies with Local Temperature Controller
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
33
, pp.
277
284
.
13.
Yang
,
T.
,
Hu
,
H.
,
Chen
,
X.
,
Chu
,
Y.
, and
Cheng
,
P.
, 2005, “
Thermal Analysis of a Die Cooling System
,”
Proceedings of NADCA Transactions
, Paper No. T05-132.
14.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Fraser
,
S.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
, 1998, “
Modeling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part I: Concept of Generalized Modeling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
623
631
.
16.
Yang
,
H.
, and
Ni
,
J.
, 2003, “
Dynamic Modeling for Machine Tool Thermal Error Compensation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
245
254
.
17.
Dennis
,
J. E.
, Jr.
, and
Schnabel
,
R. B.
, 1983, “
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,”
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Godfrey
,
K. R.
, 1980, “
Correlation Methods
,”
Automatica
0005-1098,
16
, pp.
527
534
.
19.
Papai
,
J.
, and
Mobley
,
C.
, 1991, “
Die Thermal Fields and Heat Fluxes During Die Casting of 380 Aluminum Alloy in H-13 Steel Dies
,”
Proceedings of the NADCA Congress and Exposition Detroit
, Paper No. Detroit-T91-OC1.
20.
Chui
,
C. K.
, 1992,
An Introduction to Wavelets
,
Academic Press
,
San Diego, CA
.
21.
Dour
,
G.
,
Dargusch
,
M.
,
Davidson
,
C.
, and
Nef
,
A.
, 2005, “
Development of a Non Intrusive Heat Transfer Coefficient Gauge and Its Application to High Pressure Die Casting
,”
J. Mater. Process. Technol.
0924-0136,
169
, pp.
223
233
.
You do not currently have access to this content.