This paper presents a new method to embed microthin film sensors into metallic structures by diffusion bonding. The experiments were carried out using AISI 304 stainless steel substrates with a bonding temperature of 800°C and a pressure of 4 MPa, which the developed thin film system was able to sustain. The success of embedding was validated by sensor functionality tests and metallurgical characterization. This sensor embedding method can be extended to other engineering metallic materials. To demonstrate the applications of the embedded microsensors, a PdCr thin film strain gauge array that is suitable for in situ measuring of temperatures and strains in manufacturing processes was designed and fabricated for testing in the vertical end milling process. Time- and spatial-resolved signals were obtained during the milling process. The signals were decomposed to a static part, which apparently resulted from temperature changes, and the dynamic part, which resulted from dynamic strains induced by material removal during cutting. The milling tests demonstrated the ability of using this method to measure real-time temperatures and strains within the workpiece, which will be very valuable to the fundamental understanding of various manufacturing processes. It can also be used for bench marking numerical modeling and simulations.

1.
Eaton
,
W. P.
, and
Smith
,
J. H.
, 1997, “
Micromachined Pressure Sensors: Review and Recent Developments
,”
Proc. SPIE
0277-786X,
3046
, pp.
30
41
.
2.
Gao
,
R.
, and
Li
,
Z.
, 2004, “
Micromachined Microsensors for Manufacturing
,”
IEEE Instrum. Meas. Mag.
1094-6969,
7
(
2
), pp.
20
26
.
3.
Lin
,
L.
,
Chu
,
H.-C.
, and
Lu
,
Y.-W.
, 1999, “
A Simulation Program for the Sensitivity and Linearity of Piezoresistive Pressure Sensors
,”
J. Microelectromech. Syst.
1057-7157,
8
(
4
), pp.
514
522
.
4.
Fuller
,
L. F.
, and
Sudirgo
,
S.
, 2003, “
Bulk Micromachined Pressure Sensor
,”
Proceedings of the Biennial University/Government/Industry Microelectronics Symposium
, pp.
317
320
.
5.
Guckel
,
H.
, 1991, “
Surface Micromachined Pressure Transducers
,”
Sens. Actuators, A
,
28
(
2
), pp.
133
146
. 0031-8914
6.
Chavan
,
A. V.
, and
Wise
,
K. D.
, 2001, “
Batch-Processed Vacuum-Sealed Capacitive Pressure Sensors
,”
J. Microelectromech. Syst.
1057-7157,
10
(
4
), pp.
580
588
.
7.
Chatzandroulis
,
S.
,
Tsoukalas
,
D.
, and
Neukomm
,
P. A.
, 2000, “
A Miniature Pressure System With a Capacitive Sensor and a Passive Telemetry Link for Use in Implantable Applications
,”
J. Microelectromech. Syst.
1057-7157,
9
(
1
), pp.
18
23
.
8.
Wang
,
C. C.
,
Gogoi
,
B. P.
,
Monk
,
D. J.
, and
Mastrangelo
,
C. H.
, 2000, “
Contamination-Insensitive Differential Capacitive Pressure Sensors
,”
J. Microelectromech. Syst.
1057-7157,
9
(
4
), pp.
538
543
.
9.
Zhou
,
J.
,
Dasgupta
,
S.
,
Kobayashi
,
H.
,
Wolff
,
J. M.
,
Jackson
,
H. E.
, and
Boyd
,
J. T.
, 2001, “
Optically Interrogated MEMS Pressure Sensors for Propulsion Applications
,”
Opt. Eng. (Bellingham)
0091-3286,
40
(
4
), pp.
598
604
.
10.
Plaza
,
J.
,
Collado
,
A.
,
Cabruja
,
E.
, and
Esteve
,
J.
, 2002, “
Piezoresistive Accelerometers for MCM Package
,”
J. Microelectromech. Syst.
1057-7157,
11
(
6
), pp.
794
801
.
11.
Partridge
,
A.
,
Reynolds
,
J.
,
Chui
,
B.
,
Chow
,
E.
,
Fitzgerald
,
A.
,
Zhang
,
L.
,
Maluf
,
N.
, and
Kenny
,
T.
, 2000, “
A High-Performance Planar Piezoresistive Accelerometer
,”
J. Microelectromech. Syst.
1057-7157,
9
(
1
), pp.
58
66
.
12.
Xie
,
H.
, and
Fedder
,
G.
, 2000, “
CMOS z-Axis Capacitive Accelerometer With Comb-Finger Sensing
,”
Proceedings of the IEEE MEMS
, pp.
496
501
.
13.
Luo
,
H.
,
Gang
,
A.
,
Carley
,
L.
, and
Fedder
,
G.
, 2002, “
A Post-CMOS Micromachined Lateral Accelerometer
,”
J. Microelectromech. Syst.
1057-7157,
11
(
3
), pp.
188
195
.
14.
Lüdtke
,
O.
,
Biefeld
,
V.
,
Buhrdorf
,
A.
, and
Binder
,
J.
, 2000, “
Laterally Driven Accelerometer Fabricated in Single Crystalline Silicon
,”
Sens. Actuators, A
,
82
(
1-3
), pp.
149
154
. 0924-4247
15.
Liu
,
C. H.
, and
Kenny
,
T. W.
, 2001, “
A High-Precision, Wide-Bandwidth Micromachined Tunneling Accelerometer
,”
J. Microelectromech. Syst.
1057-7157,
10
(
3
), pp.
425
433
.
16.
Li
,
L.
,
Xu
,
Y.
,
Zhao
,
Y.
,
Liang
,
C.
,
Wei
,
T.
, and
Yang
,
Y.
, 1999, “
Micromachined Accelerometer Based on Electron Tunnelling
,”
Proc. SPIE
0277-786X,
3891
, pp.
121
125
.
17.
Seshia
,
A. A.
,
Palaniapan
,
M.
,
Roessig
,
T. A.
,
Howe
,
R. T.
,
Gooch
,
R. W.
,
Schimert
,
T. R.
, and
Montague
,
S.
, 2002, “
A Vacuum Packaged Surface Micromachined Resonant Accelerometer
,”
J. Microelectromech. Syst.
1057-7157,
11
(
6
), pp.
784
793
.
18.
Burrer
,
C.
,
Esteve
,
J.
, and
Lora-Tamayo
,
E.
, 1996, “
Resonant Silicon Accelerometers in Bulk Micromachining Technology: An Approach
,”
J. Microelectromech. Syst.
1057-7157,
5
(
2
), pp.
122
130
.
19.
Pedersen
,
M.
,
Olthuis
,
W.
, and
Bergveld
,
P.
, 1998, “
High-Performance Condenser Microphone With Fully Integrated CMOS Amplifier and DC–DC Voltage Converter
,”
J. Microelectromech. Syst.
1057-7157,
7
(
4
), pp.
387
394
.
20.
Eccardt
,
P.
,
Niederer
,
K.
, and
Fischer
,
B.
, 1997, “
Micromachined Transducers for Ultrasound Applications
,”
Proceedings of the Ultrasonics Symposiun
, Toronto, Canada, Vol.
2
, pp.
1609
1618
.
21.
Dornfeld
,
D. A.
,
Lee
,
Y.
, and
Chang
,
A.
, 2003, “
Monitoring of Ultraprecision Machining Processes
,”
Int. J. Adv. Manuf. Technol.
,
21
, pp.
571
578
. 0268-3768
22.
Dornfeld
,
D. A.
, and
Cai
,
H. G.
, 1984, “
An Investigation of Grinding and Wheel Loading Using Acoustic Emission
,”
ASME J. Eng. Ind.
,
106
(
1
), pp.
28
33
. 0022-0817
23.
Tonshoff
,
H. K.
,
Wulfsberg
,
J. P.
,
Kals
,
H. J.
,
Konig
,
W.
, and
Van Luttervelt
,
C. A.
, 1998, “
Development and Trends in Monitoring and Control of Machining Processes
,”
CIRP Ann.
0007-8506,
37
(
2
), pp.
611
622
.
24.
Lierse
,
T.
, 1998, “
Mechanische und Thermische Wirkungen beim Schleifen keramischer Werk-stoffe
,” Dr.-Ing. dissertation, University of Hannover.
25.
Ziehbeil
,
F.
, 1995, “
Mechanische und Thermische Belastung von Zerspanwerkzeugen
,” Dr.-Ing. dissertation, University of Hannover.
26.
Yoshioka
,
H.
,
Hashizume
,
H.
, and
Shinno
,
H.
, 2004, “
In-Process Microsensor for Ultraprecision Machining
,
IEE Proc.: Sci., Meas. Technol.
1350-2344,
151
(
2
), pp.
121
125
.
27.
Cheng
,
X.
,
Datta
,
A.
,
Choi
,
H.
,
Zhang
,
X.
, and
Li
,
X.
, 2007, “
Study on Embedding and Integration of Micro Sensors Into Metal Structures for Manufacturing Applications
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
416
424
.
28.
Cheng
,
X.
, and
Xiaochun
,
Li.
, “
Investigation of Heat Generation in Ultrasonic Metal Welding Using Micro Sensor Arrays
,”
J. Micromech. Microeng.
0960-1317,
17
, 2007, pp.
273
282
.
29.
Datta
,
A.
,
Choi
,
H.
, and
Li
,
X.
, 2006, “
Batch Fabrication and Characterization of Embedded Thin Film Thermocouples in Metal
,”
J. Electrochem. Soc.
0013-4651,
153
(
5
), pp.
H89
H93
.
30.
Choi
,
H.
,
Datta
,
A.
,
Cheng
,
X.
, and
Li
,
X.
, 2006, “
Microfabrication and Characterization of Metal Embedded Thin Film Thermomechanical Micro Sensors for Applications in Hostile Manufacturing Environments
,”
J. Microelectromech. Syst.
1057-7157,
15
(
2
), pp.
322
329
.
31.
Data
,
A.
,
Choi
,
H.
,
Cheng
,
X.
, and
Li
,
X.
, 2005, “
Batch Production of Metal Embedded Micro Thin Film Sensors for Applications in Hostile Environments
,”
Electrochem. Solid-State Lett.
1099-0062,
8
(
11
), pp.
H94
H96
.
32.
Connor
,
L. P.
, and
O'Brien
,
R. L.
,
Welding Handbook
, Vol.
2
,
8th ed.
,
American Welding Society
,
Miami, FL
.
33.
Hulse
,
C. O.
,
Bailey
,
R. S.
,
Grant
,
H. P.
, and
Przybyszewski
,
J. S.
, 1987, “
High Temperature Static Strain Gage Development Contract
,” NASA Report No. CR-180811.
34.
Hulse
,
C. O.
,
Bailey
,
R. S.
,
Grant
,
H. P.
,
Anderson
,
W. L.
, and
Przybyszewski
,
J. S.
, 1991, “
High Temperature Static Strain Gage Development
,” NASA Report No. CR-189044.
35.
Wrbanek
,
J. D.
, and
Fralick
,
G. C.
, 2006, “
Developing Multilayer Thin Film Strain Sensors With High Thermal Stability
,” NASA Report No, TM-2006-214389.
You do not currently have access to this content.