The aims of the investigations presented in this paper were to measure the tool load under conditions of high performance drilling and to analyze if changes of the tool edge shape as well as the edge profile significantly influence the edge stresses. The described methods to analyze the influences of edge shape modifications will contribute to the optimization of drilling tools. Based on a specific cutting edge shape of a drilling tool, systematic changes to the tool’s chamfer and the transition from the chisel edge to the cutting edge were made. Forces and temperatures on the cutting edge were measured as well as the heat flow into the chips and the workpiece. Using a quick-stop device, chip roots of the different drill tools under conditions of high performance machining were made in order to analyze the chip formation. The contact between chip and rake face could be made visible by a so called contact area analysis. It could be shown that the modification of the transition from the chisel to the cutting edge influences the orientation of the forces on the drill. Machining with a rounded cutting edge shape compared to a chamfered edge reduces the mechanical and thermal tool load. This is confirmed by the fact that the deformation zone in front of the cutting edge is smaller as shown by the crosssections of the chip roots. The presented experimental methods show the possibility of determining influences of modified cutting edge shapes and to adapt the drill to the needs of the high performance drilling.

1.
Bittes
,
G.
,
Aubry
,
O.
,
Auffret
,
A.
,
Fantin
,
J. P.
,
Laur
,
R.
, and
Roger
,
C.
, 1997, “
High Speed Drilling
,”
Proceedings of the First French and German Conference on High Speed Machining
,
Metz, France
,
A.
Molinari
,
D.
Dudzinski
, and
H.
Schulz
, eds., pp.
184
195
.
2.
König
,
W.
, and
Klocke
,
F.
, 1997,
Fertigungsverfahren, Drehen, Fräsen Bohren. 5. Auflage
,
Springer-Verlag
,
Berlin
, Vol.
1
.
3.
Altan
,
T.
,
Fallböhmer
,
P.
,
Rodriguéz
,
C. A.
, and
Özel
,
T.
, 2000, “
High-Speed Machining of Cast Iron and Alloy Steels for Die and Mold Manufacturing
,”
J. Mater. Process. Technol.
0924-0136,
98
, pp.
104
115
.
4.
Emrich
,
A. K.
, 1996, “
Hochgeschwindigkeitsbohren und -reiben, Hochgeschwindigkeitsbearbeitung
,”
High-Speed Machining
,
H.
Schulz
, ed.,
Carl Hanser
,
Munich
, pp.
104
113
.
5.
Schulz
,
H.
, 2001,
Scientific Fundamentals of HSC
,
Carl Hanser
,
Munich
.
6.
Albrecht
,
P.
, 1960, “
New Developments in the Theory of the Metal-Cutting Process—Part I: The Ploughing Process in Metal Cutting
,”
J. Eng. Ind.
0022-0817,
82
, pp.
348
358
.
7.
Horne
,
J. G.
,
Wright
,
P. K.
, and
Bagchi
,
A.
, 1981, “
A Study of Built-Up-Edge Formation Using Transparent Cutting Tools
,”
Ninth North American Manufacturing Res. Conference Proceedings
,
The Pennsylvania State University
, pp.
223
230
.
8.
Komandouri
,
R.
, and
Brown
,
R. H.
, 1981, “
On the Mechanics of Chip Segmentation in Machining
,”
ASME J. Eng. Ind.
0022-0817,
103
, pp.
33
51
.
9.
Kountanya
,
R. K.
, and
Endres
,
W. J.
, 2004, “
Flank Wear of Edge-Radiused Cutting Tools Under Ideal Straight-Edged Orthogonal Conditions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
496
505
.
10.
Schimmel
,
R. J.
,
Manjunathaiah
,
J.
, and
Endres
,
W. J.
, 2000, “
Edge Radius Variability and Force Measurement Considerations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
11
, pp.
590
593
.
11.
Warnecke
,
G.
, 1974, “
Spanbildung bei metallischen Werkstoffen
, Fertigungstechnische Berichte, Vol.
2
.
12.
Warnecke
,
G.
, 1977, “
A New Method for Visualizing the Cutting Process
,” Manuf. Eng., 5th North American Metalworking Res. Conf. Proc., pp.
229
236
.
13.
Griffiths
,
B. J.
, 1986, “
The Development of a Quick-Stop Device for Use in Metal Cutting Hole Manufacturing Processes
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
26
(
2
), pp.
191
203
.
14.
Weinert
,
K.
,
Koehler
,
W.
, and
Opalla
,
D.
, 2001, “
Analysis of the Mechanical Tool Load During High Speed Drilling
,”
Scientific Fundamentals of High Speed Cutting
,
H.
Schulz
, ed.,
Carl-Hanser
,
Munich
, pp.
172
179
.
15.
Weinert
,
K.
,
Koehler
,
W.
, and
Opalla
,
D.
, 2001, “
Mechanical Tool Load During Drilling With High Velocities
,”
Production Engineering
,
8
(
2
), pp.
111
114
.
16.
Koehler
,
W.
, 2004, “
Analyse des Einflusses der Schneidenform auf den Hochleistungsbohrprozess
,” Ph.D. thesis, University Dortmund.
17.
Spur
,
G.
, 1960, “
Beitrag zur Schnittkraftmessung beim Bohren mit Spiralbohrern unter Berücksichtigung der Radialkräfte
,” Ph.D. thesis, TH Braunschweig.
18.
Witte
,
L.
, 1980, “
Spezifische Zerspankräfte beim Drehen und Bohren
,” Ph.D. thesis, RWTH Aachen.
19.
Schmidt
,
A. O.
, and
Roubik
,
J. R.
, 1949, “
Distribution of Heat Generated in Drilling
,”
Trans. ASME
0097-6822,
71
, pp.
245
252
.
20.
Weinert
,
K.
,
Koehler
,
W.
, and
Opalla
,
D.
, 2002, “
Schnittunterbrechung beim Bohren mit hohen Geschwindigkeiten
,” wt—Werkstattstechnik online (92), pp.
176
178
.
21.
Ziebeil
,
F.
, 1996, “
Mechanische und thermische Belastung von Zerspanwerkzeugen
,” Fortschritt-Berichte VDI (18/193).
22.
Bach
,
Fr.-W.
,
Koehler
,
W.
,
Schäperkötter
,
M.
, and
Weinert
,
K.
, 2004,
Kontaktflächenanalyse beim Hochgeschwindigkeits-Bohren
,
Springer
,
New York
, pp.
30
32
.
23.
Klocke
,
F.
, and
Hoppe
,
S.
, 2001, “
Mechanisms of Chip Formation in High Speed Cutting
,”
Scientific Fundamentals of HSC
,
H.
Schulz
, ed.,
Carl Hanser
,
Munich
, pp.
1
10
.
24.
Tönshoff
,
H. K.
et al.
, 2001, “
Characterizing the HSC-Range—Material Behaviour and Residual Stress
,”
Scientific Fundamentals of HSC
,
H.
Schulz
, ed.,
Carl Hanser
,
Munich
, pp.
103
112
.
25.
Eisenblätter
,
G.
2000, “
Trockenbohren mit Vollhartmetallwerkzeugen
,” Ph.d. Thesis, RWTH Aachen.
You do not currently have access to this content.