Cost and dimensional variation of products are significant attributes in multistation assembly processes. These attributes depend on product∕process tolerances and fixture layouts. Typically, tolerance allocation and fixture layout design are conducted separately without considering potential interrelations. In this work, we use multiobjective optimization for integrated tolerance allocation and fixture layout design to address interactions and to quantify tradeoffs among cost, product variation, and assembly process sensitivity. A nested optimization strategy is applied to a vehicle side frame assembly. Results demonstrate the presence and quantification of tradeoffs, based on which we introduce the concept of critical variation and critical budget requirements.

1.
Hu
,
S. J.
, 1997, “
Stream of Variation Theory for Automotive Body Assembly
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
1
6
.
2.
Thornton
,
A. C.
, 2003,
Variation Risk Management: Focusing Quality Improvements in Product Development and Production
,
Wiley
,
New York
.
3.
Speckhart
,
F. H.
, 1972, “
Calculation of Tolerance Based on a Minimum Cost Approach
,”
ASME J. Eng. Ind.
0022-0817,
94
, pp.
447
453
.
4.
Ostwald
,
P. F.
, and
Huang
,
J.
, 1977, “
A Method for Optimal Tolerance Selection
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
558
565
.
5.
Zhang
,
H.
, 1997,
Advanced Tolerancing Techniques
,
Wiley-Interscience
,
New York
.
6.
Li
,
B.
, and
Melkote
,
S.
, 1999, “
Improved Workpiece Location Accuracy Through Fixture Layout Optimization
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
, pp.
871
883
.
7.
Ding
,
Y.
,
Jin
,
J.
,
Ceglarek
,
D.
, and
Shi
,
J.
,2005, “
Process-Oriented Tolerancing for Multi-Station Assembly Systems
,”
IIE Trans.
0740-817X,
37
(
6
), pp.
493
508
.
8.
Asada
,
H.
and
By
,
A. B.
, 1985, “
Kinematic Analysis of Work Part Fixturing for Flexible Assembly With Automatically Reconfigurable Fixture
,”
IEEE J. Rob. Autom.
0882-4967,
1
(
2
), pp.
86
94
.
9.
Cai
,
W. J.
,
Hu
,
S. J.
, and
Yuan
,
J.
, 1997, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
593
602
.
10.
Wang
,
M. Y.
and
Pelinescu
,
D. M.
, 2001, “
Optimizing Fixture Layout in a Point-Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
, pp.
312
323
.
11.
Kim
,
P.
, and
Ding
,
Y.
, 2004, “
Optimal Design of Fixture Layout in Multi-Station Assembly Processes
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
1
(
2
), pp.
133
145
.
12.
Mantripragada
,
R.
, and
Whitney
,
D. E.
, 1999, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
1042-296X,
115
(
1
), pp.
124
140
.
13.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
4
), pp.
756
762
.
14.
Lawless
,
J. F.
,
Mackay
,
R. J.
, and
Robinson
,
J. A.
, 1999, “
Analysis of Variation Transmission in Manufacturing Processes (Part I)
,”
J. Quality Technol.
0022-4065,
31
(
2
), pp.
131
142
.
15.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
673
681
.
16.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Modeling and Diagnosis of Multistage Manufacturing Process: Part I—State Space Model
,”
Proceedings of Japan–USA Symposium on Flexible Automation
,
Ann Arbor, MI
, July 23–26, Paper No. 2000JUSFA-13146.
17.
Devor
,
R. E.
,
Chang
,
T.
, and
Sutherland
,
J. W.
, 1992,
Statistical Quality Design and Control: Contemporary Concepts and Methods
,
MacMillan
,
New York
.
18.
Wilde
,
D.
, and
Prentice
,
E.
, 1975, “
Minimum Exponential Cost Allocation of Sure-Fit Tolerances
,”
ASME J. Eng. Ind.
0022-0817,
97
, pp.
1395
1398
.
19.
Wu
,
Z.
,
Elmaraghy
,
W. H.
, and
Elmaraghy
,
H. A.
, 1988, “
Evaluation of Cost-Tolerance Algorithms for Design Tolerance Analysis and Synthesis
,”
Manuf. Rev.
0896-1611,
1
(
3
), pp.
168
179
.
20.
Chase
,
K. W.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Hauglund
,
L. F.
, 1990, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
0896-1611,
3
(
1
), pp.
49
59
.
21.
2004, MATLAB,
3rd ed.
, Optimization Toolbox for use with MATLAB,
Math Works
, Natick, MA.
22.
2004, iSIGHT, Reference Manual for iSIGHT version 9.0,
Engineous Software, Inc.
You do not currently have access to this content.