Diamond turning of microstructures on the surface of large cylindrical workpieces has become important with advances made in roll-to-roll manufacturing processes of optical films, drag reduction films, microfluidic devices, and organic electronic components. Micromachined cylindrical workpieces are used as production masters in various printing, embossing, and coating processes. The microstructures machined in this study were 18μm in height and had a pitch of 35μm. These dimensions required control of the location of the single crystal diamond cutting tool that was used for machining to submicrometer levels. The significant error sources identified in the machining process were thermal effects and deflections of the structural loop of the diamond turning machine (DTM) that led to registration errors of the cutting tool between consecutive passes. Environmental temperature variation errors (ETVEs) were measured and modeled as a function of long-term ambient temperature fluctuations. Also studied was the mechanical compliance of the structural loop of the DTM. The height adjustable tool stack and aerostatic spindle were identified as the most compliant components. The cutting forces for radius and V-shaped diamond cutting tools at various depths of cut were measured using the known compliance of the aerostatic bearing to predict workpiece deflections.

1.
Evans
,
C.
, 1989,
Precision Engineering: An Evolutionary View
,
Cranfield
,
Bedford, England
.
2.
Bryan
,
J. B.
, 1979, “
Design and Construction of an 84Inch Diamond Turning Machine
,”
Precis. Eng.
0141-6359,
1
(
1
), pp.
13
17
.
3.
Atkinson
,
D. P.
,
Patterson
,
S. R.
,
Donaldson
,
R. R.
,
Chrislock
,
J. L.
, and
Estler
,
W. T.
, 1985, “
Accuracy Measurements and Initial Operational Experience for the Large Optics Diamond Turning Machine
,” Internal Report: Lawrence Livermore National Laboratory.
4.
Thompson
,
D. C.
,
Chrislock
,
J. L.
, and
Newton
,
L. E.
, 1982, “
The Development of an Inexpensive, High-Accuracy Diamond Turning Machine
,”
Precis. Eng.
0141-6359,
4
(
2
), pp.
73
77
.
5.
Gijsbers
,
T. G.
, 1984, “
Some Aspects of Precision Machining Within Philips in 1984
,”
Proc. SPIE
0277-786X,
508
, pp.
26
30
.
6.
Casstevens
,
J. M.
, 1978, “
Development of a One-Microinch Spindle for Diamond Turning of Optics
,”
Proc. Soc. Photo-Opt. Instrum. Eng.
0361-0748,
159
, pp.
10
17
.
7.
Evans
,
C. J.
, and
Bryan
,
J. B.
, 1999, “
Structured, Textured, or Engineered Surfaces
,”
CIRP Ann.
0007-8506,
48
(
2
), pp.
541
556
.
8.
Gao
,
W.
,
Dejima
,
S.
, and
Kiyono
,
S.
, 2005, “
A Dual-Mode Surface Encoder for Position Measurement
,”
Sens. Actuators, A
0924-4247,
117
(
1
), pp.
95
102
.
9.
Gale
,
M. T.
, 1997, “
Replication Technology for Holograms and Diffractive Optical Elements
,”
J. Imaging Sci. Technol.
1062-3701,
41
(
3
), pp.
211
220
.
10.
Miyamoto
,
I.
,
Ezawa
,
T.
, and
Nishimura
,
K.
, 1990, “
Ion Beam Machining of Singlepoint Diamond Tools for Nano-Precision Turning
,”
Nanotechnology
0957-4484,
1
, pp.
44
49
.
11.
Zong
,
W. J.
,
Li
,
D.
,
Sun
,
T.
, and
Cheng
,
K.
, 2006, “
Contact Accuracy and Orientations Affecting the Lapped Tool Sharpness of Diamond Cutting Tools by Mechanical Lapping
,”
Diamond Relat. Mater.
0925-9635,
15
, pp.
1424
1433
.
12.
Donaldson
,
R. R.
,
Syn
,
C. K.
,
Taylor
,
J. S.
,
Riddle
,
R. A.
, 2006, “
Chip Science: Basic Study of the Single-point Cutting Process
,” Eng Res Annual Report Fy85, Llnl Ucid-19328-85-2, pp.
69
85
.
13.
Gao
,
W.
,
Motoki
,
T.
, and
Kiyono
,
S.
, 2006, “
Nanometer Edge Profile Measurement of Diamond Cutting Tools by Atomic Force Microscope With Optical Alignment Sensor
,”
Precis. Eng.
0141-6359,
30
, pp.
396
405
.
14.
Testorf
,
M.
,
Sinzinger
,
S.
,
Muller
,
A.
,
Moisel
,
J.
,
Kufner
,
S.
,
Kufner
,
M.
,
Brener
,
K. H.
,
Gottert
,
J.
, and
Mohr
,
J.
, 1993, “
Application of Three-Dimensional Microoptical Components Formed by Lithography, Electroforming, and Plastic Molding
,”
Appl. Opt.
0003-6935,
32
(
32
), pp.
6464
6469
.
15.
Gutierrez-Rivera
,
L. E.
,
De Carvalho
,
E. J.
,
Aparecida Silva
,
M.
,
Cescato
,
L.
, 2005, “
Metallic Submicrometer Sieves Fabricated by Interferometric Lithography and Electroforming
,”
J. Micromech. Microeng.
0960-1317,
15
(
10
), pp.
1932
1937
.
16.
Schmitz
,
T.
, and
Donaldson
,
R.
, 2000, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann.
0007-8506,
49
(
1
), pp.
303
308
.
17.
Den Hartog
,
J. P.
, 1956,
Mechanical Vibrations
,
4th ed.
,
McGraw-Hill
,
New York
.
18.
Bryan
,
J. B.
, 1990, “
International Status of Thermal Error Research
,”
CIRP Ann.
0007-8506,
39
(
2
), pp.
645
657
.
19.
ASME ANSI B5.57
, 1998,
Methods for Performance Evaluation of Computer Numericaly Controlled Lathes and Turning Centers
.
20.
Muller
,
B.
, and
Renz
,
U.
, 2001, “
Development of a Fast Fiber-Optic Two-Color Pyrometer for the Temperature Measurement of Surfaces With Varying Emissivities
,”
Rev. Sci. Instrum.
0034-6748,
72
(
8
), pp.
3366
3374
.
21.
Huda
,
M. A.
,
Yamada
,
K.
,
Hosokawa
,
A.
, and
Ueda
,
T.
, 2002, “
Investigation of Temperature at Tool-Chip Interface in Turning Using Two-Color Pyrometer
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
200
207
.
22.
Balint
,
J. J.
, and
Brown
,
R. H.
, 1964, “
A Note on the Investigation of Rake Face Tool Wear
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
4
, pp.
117
22
.
23.
Usui
,
E.
,
Shirakashi
,
T.
, and
Kitagawa
,
T.
, 1978, “
Analytical Prediction of Three Dimensional Cutting Process. Part 3: Cutting Temperature and Creater Wear of Carbide Tool
,”
ASME J. Eng. Ind.
0022-0817,
100
, pp.
236
243
.
24.
Hatamura
,
Y.
,
Nagao
,
T.
,
Mitsuishi
,
M.
,
Kato
,
S.
,
Taguchi
,
S.
,
Okumura
,
T.
,
Nakagawa
,
G.
, and
Sugishita
,
H.
, 1993, “
Development of an Intelligent Machining Center Incorporating Active Compensation for Thermal Distortion
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
549
552
.
25.
Srinivasa
,
N.
, and
Ziegert
,
J. C.
, 1996, “
Automated Measurement and Compensation of Thermally Induced Error Maps in Machine Tools
,”
Precis. Eng.
0141-6359,
19
, pp.
112
132
.
26.
Delbressine
,
F. L. M.
,
Florussen
,
G. H. J.
,
Schijvenaars
,
L. A.
, and
Schellekens
,
P. H. J.
, 2006, “
Modelling Thermomechanical Behaviour of Multi-Axis Machine Tools
,”
Precis. Eng.
0141-6359,
30
(
1
), pp.
47
53
.
27.
Kim
,
S. M.
, and
Lee
,
S. K.
, 2001, “
Prediction of Thermo-Elastic Behavior in a Spindle-Bearing System Considering Bearing Surroundings
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
6
), pp.
809
831
.
28.
Jorgensen
,
B. R.
, and
Shin
,
Y. C.
, 1997, “
Dynamics of Machine Tool Spindle/Bearing Systems Under Thermal Growth
,”
ASME J. Tribol.
0742-4787,
119
(
4
), pp.
875
882
.
29.
Bossmanns
,
B.
, and
Tu
,
J. F.
, 1999, “
A Thermal Model for High Speed Motorized Spindles
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
, pp.
1345
1366
.
30.
Ko
,
T. J.
,
Gim
,
T. W.
,
Ha
,
J.
, 2003, “
Particular Behavior of Spindle Thermal Deformation by Thermal Bending
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
1
), pp.
17
23
.
31.
Rakuff
,
S.
, and
Beaudet
,
P.
, 2007, “
Thermally Induced Errors in Diamond Turning of Optical Surfaces
,”
Opt. Eng. (Bellingham)
0091-3286,
46
(
10
),
103401
.
32.
Ueda
,
T.
,
Sato
,
M.
, and
Nakayama
,
K.
, 1996, “
The Temperature of a Single Crystal Diamond Tool in Turning
,”
CIRP Ann.
0007-8506,
47
(
1
), pp.
41
44
.
33.
Paul
,
E.
,
Chris
,
E. J.
,
Mangamelli
,
A.
,
McGlauflin
,
M. L.
, and
Polvani
,
R. S.
, 1996, “
Chemical Aspects of Tool Wear in Single Point Diamond Turning
,”
Precis. Eng.
0141-6359,
18
(
1
), pp.
4
19
.
34.
Ueda
,
T.
,
Hosokawa
,
A.
, and
Yamada
,
K.
, 2006, “
Effect of Oil Mist on Tool Temperature in Cutting
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
130
135
.
35.
Sun
,
J.
,
Ju
,
C.
,
Yue
,
Y.
,
Gunter
,
K. L.
,
Michalek
,
D. J.
, and
Sutherland
,
J. W.
, 2004, “
Character and Behavior of Mist Generated by Application of Cutting Fluid to a Rotating Cylindrical Workpiece. Part 1: Model Development
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
417
425
.
36.
Sun
,
J.
,
Ju
,
C.
,
Yue
,
Y.
,
Gunter
,
K. L.
,
Michalek
,
D. J.
, and
Sutherland
,
J. W.
, 2004, “
Character and Behavior of Mist Generated by Application of Cutting Fluid to a Rotating Cylindrical Workpiece, Part 2: Experimental Validation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
426
434
.
37.
Bryan
,
J. B.
, 1995, “
Temperature Fundamentals. Chapter 8 in Coordinate Measuring Machines and Systems
,”
J. A.
Bosch
, ed.,
Dekker
,
New York
, pp.
227
264
.
38.
Smith
,
S. T.
, and
Chetwynd
,
D. G.
, 1992,
Foundations of Ultra-Precision Mechanism Design
,
Gordon and Breach
,
New York
.
39.
Uriarte
,
L.
,
Herrero
,
A.
,
Zatarain
,
M.
,
Santiso
,
G.
,
Lopez de Lacalle
,
L. N.
,
Lamikiz
,
A.
, and
Albizuri
,
J.
, 2007, “
Error Budget and Stiffness Chain Assessment in a Micromilling Machine Equipped With Tools Less than 0.3mm in Diameter
,”
Precis. Eng.
0141-6359,
31
, pp.
1
12
.
40.
Murty
,
A. S. R.
, and
Padmanabhana
,
K. K.
, 1982, “
Effect of Surface Topography on Damping in Machine Joints
,”
Precis. Eng.
0141-6359,
4
, pp.
185
190
.
41.
Thornley
,
R. H.
, and
Koenigsberger
,
F.
, 1971, “
Dynamic Characteristics of Machined Joints Loaded and Excited Normal to the Joint Face
,”
CIRP Ann.
0007-8506,
19
(
3
),
459
469
.
42.
Couey
,
J. A.
,
Marsh
,
E. R.
,
Knapp
,
B. R.
, and
Ryan
,
V. R.
, 2005, “
In-Process Force Monitoring for Precision Grinding Semiconductor Silicon Wafers
,”
Int. J. Manufacturing Technology and Management
,
7
(
5–6
), pp.
430
440
.
43.
Arcona
,
C.
, and
Dow
,
T. A.
, 1998, “
An Empirical Tool Force Model for Precision Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
700
707
.
44.
Furukawa
,
Y.
, and
Moronuki
,
N.
, 1988, “
Effect of Material Properties on Ultraprecise Cutting Processes
,”
CIRP Ann.
0007-8506,
37
(
1
), pp.
113
116
.
45.
Bryan
,
J.
,
Carter
,
D.
,
Clouser
,
R.
, and
Stratton
,
F.
, 1986, “
Grinding and Measuring Long Shafts to Roundness Errors of One Microinch Using Hydrostatic Spherical Centers
,”
Proceedings of the 3rd Biennial International Machine Tool Technical Conference
,
NMTB Association
,
Chicago, IL
, Sept. 4–10.
You do not currently have access to this content.