Recent developments in integrated microphotonics have led to unprecedented potential toward robust sensor enhancements for manufacturing systems. These micron-sized subwavelength structured photonic sensors could allow critical thermomechanical phenomena in manufacturing processes to be monitored while offering immunity to electromagnetic interference, resistance to hostile environments, multiplexing capabilities, and high rates of data collection. To implement these novel sensors into real manufacturing processes, the microphotonic sensors can be embedded at critical locations in metallic structures, which are heavily used in hostile manufacturing environments. This paper presents the study of design, fabrication, and characterization of integrated microring sensors. Various thin film optical materials were studied and single ring resonators were designed. A new approach to fabricate metal embedded microring sensors was developed. Metal embedded optical microring temperature sensors were characterized. The Q factor of the metal embedded microring sensors was measured to be around 2000, while the free spectral range was about 5.2nm. The temperature sensitivity of the metal embedded microring sensor was 24.2pm°C.

1.
Chu
,
S. T.
,
Little
,
B.
,
Pan
,
W.
,
Kaneko
,
T.
,
Sato
,
S.
, and
Kokubun
,
Y.
, 1999, “
An 8 Channel Add∕Drop Filter Using Vertically Coupled Microring Resonators Over a Cross Grid
,”
IEEE Photonics Technol. Lett.
1041-1135,
11
, pp.
691
693
.
2.
Rabiei
,
P.
, and
Steier
,
W. H.
, 2002, “
Polymer Micro-Ring Filters and Modulators
,”
J. Lightwave Technol.
0733-8724,
20
, pp.
1968
1975
.
3.
Little
,
B. E.
,
Foresi
,
J. S.
,
Steinmeyer
,
G.
,
Thoen
,
E. R.
,
Chu
,
S. T.
,
Haus
,
H. A.
,
Ippen
,
E. P.
,
Kimerling
,
L. C.
, and
Greene
,
W.
, 1998, “
Ultra-Compact Si–SiO2 Microring Resonator Optical Channel Dropping Filters
,”
IEEE Photonics Technol. Lett.
1041-1135,
10
, pp.
549
551
.
4.
Klunder
,
D. J. W.
,
Krioukov
,
E.
,
Tan
,
F. S.
,
van der Veen
,
T.
,
Bulthuis
,
H. F.
,
Sengo
,
G.
,
Otto
,
C.
,
Hoekstra
,
H. J. W. M.
, and
Driessen
,
A.
, 2001, “
Vertically and Laterally Waveguide-Coupled Cylindrical Microresonators in Si3N4 on SiO2 Technology
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
73
, pp.
603
608
.
5.
Lee
,
H.-P.
,
Park
,
J.-J.
,
Ryoo
,
H.-H.
,
Gol Lee
,
S.
,
Beom Hoan
,
O.
, and
Lee
,
E.-H.
, 2003, “
Resonance Characteristics of Waveguide-Coupled Polyimide Microring Resonator
,”
Opt. Mater. (Amsterdam, Neth.)
0925-3467,
21
, pp.
535
541
.
6.
Rafizadeh
,
D.
,
Zhang
,
J. P.
,
Hagness
,
S. C.
,
Taflove
,
A.
,
Stair
,
K. A.
,
Ho
,
S. T.
, and
Tiberio
,
R. C.
, 1997, “
Waveguide-Coupled AlGaAs∕GaAs Microcavity Ring and Disk Resonators With High Finesse and 21.6nm Free Spectral Range
,”
Opt. Lett.
0146-9592,
22
, pp.
1244
1246
.
7.
Li
,
X.
, 2001, “
Embedded Sensors in Layered Manufacturing
,” Ph.D. thesis, Stanford University, Stanford, CA.
8.
Halg
,
B.
, 1990, “
On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics
,”
Electro Mechanical Systems Workshop
,
Napa Valley, CA
, pp.
172
176
.
9.
Choi
,
J. M.
,
Lee
,
R. K.
, and
Yariv
,
A.
, 2001, “
Control of Critical Coupling in a Ring Resonator-fiber Configuration: Application to Wavelength-Selective Switching, Modulation, Amplification, and Oscillation
,”
Opt. Lett.
0146-9592,
26
, pp.
1236
1238
.
10.
Okamoto
,
K.
, 2000,
Fundamentals of Optical Waveguides
,
Academic
,
San Diego, CA
, Chap. 4.
11.
Sherwood
,
T.
,
Young
,
A. C.
,
Takayesu
,
J.
,
Jen
,
A. K. Y.
,
Dalton
,
L. R.
, and
Chen
,
A.
, 2005, “
Microring Resonators on Side-Polished Optical Fiber
,”
IEEE Photonics Technol. Lett.
1041-1135,
17
, pp.
2107
2109
.
12.
Baehr-Jones
,
T.
,
Hochberg
,
M.
,
Walker
,
C.
, and
Scherer
,
A.
, 2004, “
High-Q Ring Resonators in Thin Silicon-on-Insulator
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
3346
3347
.
13.
Agrawal
,
G. P.
, 2002,
Fiber-Optic Communication Systems
,
3rd.
,
Wiley
,
New York, NY
, Chap. 2.
14.
Modreanu
,
M.
,
Gartner
,
M.
,
Tomozeiu
,
N.
, and
Szekeres
,
A.
, 2001, “
Optical and Electrical Properties of As Deposited LPCVD SiOxNy Thin Films
,”
J. Optoelectron. Adv. Mater.
1454-4164,
3
(
2
), pp.
275
285
.
15.
Warnecke
,
A. J.
, and
LoPresti
,
P. J.
, 1973, “
Refractive Index Dispersion in Semiconductor-Related Thin Films
,”
IBM J. Res. Dev.
0018-8646,
17
(
3
), pp.
256
262
.
16.
Lou
,
J.
,
Allameh
,
S.
,
Buccheit
,
T.
, and
Soboyejo
,
W. O.
, 2003, “
An Investigation of the Effects of Thickness on Mechanical Properties of LIGA Nickel MEMS Structures
,”
J. Mater. Sci.
0022-2461,
38
, pp.
4129
4135
.
17.
Moerman
,
I.
,
Van Daele
,
P. P.
, and
Demeester
,
P. M.
, 1997, “
A Review on Fabrication Technologies for the Monolithic Integration of Tapers With III-V Semiconductor Devices
,”
IEEE J. Sel. Top. Quantum Electron.
1077-260X,
3
, pp.
1308
1320
.
18.
Subramaniam
,
V.
,
De Brabander
,
G. N.
,
Naghski
,
D. H.
, and
Boyd
,
J. T.
, 1997, “
Measurement of Mode Field Profiles and Bending and Transition Losses in Curved Optical Channel Waveguides
,”
J. Lightwave Technol.
0733-8724,
15
, pp.
990
997
.
19.
Alder
,
T.
,
Stohr
,
A.
,
Heinzelmann
,
R.
, and
Jager
,
D.
, 2000, “
High-Efficiency Fiber-to-Chip Coupling Using Low-Loss Tapered Single-Mode Fiber
,”
IEEE Photonics Technol. Lett.
1041-1135,
12
, pp.
1016
1018
.
20.
Li
,
X.
,
Prinz
,
F.
, and
Seim
,
J.
, 2001, “
Thermal Behavior of a Metal Embedded Fiber Bragg Grating Sensor
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
575
579
.
21.
Bona
,
G. L.
,
Germann
,
R.
, and
Offrein
,
B. J.
, 2003, “
SiON High-Refractive-Index Waveguide and Planar Lightwave Circuits
,”
IBM J. Res. Dev.
0018-8646,
47
, pp.
239
249
.
You do not currently have access to this content.