To address a major technical challenge in simulating geometric models of machined sculptured surfaces in three-axis virtual machining, this paper presents an efficient, accurate approach to representing the 3D envelopes of a cutter sweeping sequentially through cutter locations; these envelopes embody the furrow patches of the machined surfaces. In our research, the basic mechanism of removing stock material in three-axis computer numerically controlled (CNC) milling of sculptured surfaces is investigated, and, consequently, an effective model is proposed to represent the 3D envelopes (or furrow patches). Our main contribution is that a new directrix (or swept profile) of the furrow patches (mathematically, ruled surfaces) is identified as a simple 2D envelope of cutting circles and is formulated with a closed-form equation. Therefore, the 3D cutter-swept envelopes can be represented more accurately and quickly than the existing swept-volume methods. With this innovative approach, a method of accurate prediction of the machining errors along tool paths in three-axis finish machining is provided, which is then applied to the optimization of tool-path discretization in two examples. Their results demonstrate the advantages of our approach and verify that the current machining-error-prediction methods can cause gouging in three-axis sculptured surface milling.

1.
Ikua
,
B. W.
,
Tanaka
,
H.
,
Obata
,
F.
, and
Sakamoto
,
S.
, 2001, “
Prediction of Cutting Forces and Machining Error in Ball End Milling of Curved Surfaces—I Theoretical Analysis
,”
Precis. Eng.
0141-6359,
25
, pp.
266
273
.
2.
Altintas
,
Y.
, and
Engin
,
S.
, 2001, “
Generalized Modeling of Mechanics and Dynamics of Milling Cutters
,”
CIRP Ann.
0007-8506,
50
(
1
), pp.
25
30
.
3.
Feng
,
H. Y.
, and
Menq
,
C. H.
, 1996, “
A Flexible Ball-End Milling System Model for Cutting Force and Machining Error Prediction
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
461
469
.
4.
Yun
,
W. S.
,
Ko
,
J. H.
,
Cho
,
D. W.
, and
Ehmann
,
K. F.
, 2002, “
Development of a Virtual Machining System, Part 2: Prediction and Analysis of a Machined Surface Error
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1607
1613
.
5.
Martin
,
R.
, and
Stephenson
,
P.
, 1990, “
Sweeping of Three-Dimensional Objects
,”
Comput.-Aided Des.
0010-4485,
22
(
4
), pp.
223
234
.
6.
Weld
,
J.
, and
Leu
,
M.
, 1990, “
Geometric Representation of Swept Volume with Application to Polyhedral Objects
,”
Int. J. Robot. Res.
0278-3649,
9
(
5
), pp.
105
116
.
7.
Juttler
,
B.
, and
Wagner
,
M.
, 1996, “
Spatial Rational B-Spline Motions
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
193
201
.
8.
Kieffer
,
J.
, and
Litvin
,
F.
, 1991, “
Swept Volume Determination and Interference Detection for Moving 3-D Solids
,”
ASME J. Mech. Des.
1050-0472,
113
, pp.
456
463
.
9.
Blackmore
,
D.
,
Leu
,
M. C.
, and
Wang
,
L. P.
, 1997, “
The Sweep-Envelope Differential Equation Algorithm and its Application to NC Machining Verification
,”
Comput.-Aided Des.
0010-4485,
29
(
9
), pp.
629
637
.
10.
Abdel-Malek
,
K.
, and
Yeh
,
H. J.
, 1997, “
Geometric Representation of the Swept Volume Using the Jacobian Rank Deficiency Conditions
,”
Comput.-Aided Des.
0010-4485,
29
(
6
), pp.
457
468
.
11.
Yang
,
J.
, and
Abdel-Malek
,
K.
, 2006, “
Verification of NC Machining Processes Using Swept Volumes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
28
, pp.
82
91
.
12.
Yang
,
J.
, and
Abdel-Malek
,
K.
, 2005, “
Approximate Swept Volumes of NURBS Surfaces or Solids
,”
Comput. Aided Geom. Des.
0167-8396,
22
, pp.
1
26
.
13.
Chung
,
Y. C.
,
Park
,
J. W.
,
Shin
,
H.
, and
Choi
,
B. K.
, 1998, “
Modeling the Surface Swept by a Generalized Cutter for NC Verification
,”
Comput.-Aided Des.
0010-4485,
30
(
8
), pp.
587
594
.
14.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 1999, “
A Shape-Generating Approach for Multi-Axis Machining G-Buffer Models
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
761
776
.
15.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 2002, “
Swept Surface Determination for Five-Axis Numerical Control Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1497
1507
.
16.
Chiou
,
C. J.
, 2004, “
Accurate Tool Position for Five-Axis Rule Surface Machining by Swept Envelope Approach
,”
Comput.-Aided Des.
0010-4485,
36
(
10
), pp.
967
974
.
17.
Weinert
,
K.
,
Du
,
S.
,
Damm
,
P.
, and
Stautner
,
M.
, 2004, “
Swept Volume Generation for the Simulation of Machining Processes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
617
628
.
18.
Du
,
S.
,
Surmann
,
T.
,
Webber
,
O.
, and
Weinert
,
K.
, 2005, “
Formulating Swept Profiles for Five-Axis Tool Motions
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
849
861
.
19.
Roth
,
D.
,
Bedi
,
S.
,
Ismail
,
F.
, and
Mann
,
S.
, 2001, “
Surface Swept by a Toroidal Cutter During 5-Axis Machining
,”
Comput.-Aided Des.
0010-4485,
33
(
1
), pp.
57
63
.
20.
Wang
,
W. P.
, and
Wang
,
K. K.
, 1986, “
Geometric Modeling for Swept Volume of Moving Solids
,”
IEEE Comput. Graphics Appl.
0272-1716,
6
(
12
), pp.
8
17
.
21.
Altintas
,
Y.
, and
Spence
,
A.
, 1991, “
End Milling Force Algorithm for CAD Systems
,”
CIRP Ann.
0007-8506,
40
, pp.
31
34
.
22.
Bohez
,
E. L. J.
,
Minh
,
N. T. H.
,
Kiatsrithanakorn
,
B.
,
Natasukon
,
P.
,
Huang
,
R. Y.
, and
Son
,
T.
, 2003, “
The Stencil Buffer Sweep Plane Algorithm for 5-Axis CNC Tool Path Verification
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
1129
1142
.
23.
Kim
,
Y. J.
,
Varadhan
,
G.
,
Lin
,
M. C.
, and
Manocha
,
D.
, 2004, “
Fast Swept Volume Approximate of Complex Polyhedral Models
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
1013
1027
.
24.
Faux
,
I. D.
, and
Pratt
,
M. J.
, 1979,
Computational Geometry for Design and Manufacture
,
Ellis Harwood Limited
,
New York
.
25.
Loney
,
G. C.
, and
Ozsoy
,
T. M.
, 1987, “
NC Machining of Free Form Surfaces
,”
Comput.-Aided Des.
0010-4485,
19
(
2
), pp.
85
90
.
26.
Choi
,
B. K.
, and
Jerard
,
R. B.
, 1998,
Sculptured Surface Machining: Theory and Applications
,
Kluwer Academic
,
London
.
27.
George
,
K. K.
, and
Ramesh
,
B. N.
, 1995, “
On the Effective Tool Path Planning Algorithms for Sculptured Surface Manufacture
,”
Comput. Ind. Eng.
0360-8352,
28
(
4
), pp.
823
838
.
28.
Childs
,
J. J.
, 1973,
Numerical Control Part Programming
,
Industrial
,
New York
.
You do not currently have access to this content.