Process parameter optimization has been widely investigated in single-tool machining operations. However, for multitool machining operation optimization, the research reported in literature is scarce. In this paper, a novel heuristic algorithm based on particle swarm optimization (PSO) is proposed to optimize, in terms of minimum machining time, the process parameters for two-tool parallel turning operations with n features. Both single-pass and multipass operations are considered. The simulation results show that the performance of the proposed algorithm, in terms of total machining time and required computational time, is superior to an exhaustive search algorithm.

1.
Ermer
,
D. S.
, and
Morris
,
S. M.
, 1969, “
A Treatment of Error of Estimation in Determining Optimum Machining Conditions
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
9
(
3
), pp.
357
362
.
2.
Iwata
,
K.
,
Murotsu
,
Y.
,
Iwatsubo
,
T.
, and
Fujii
,
S.
, 1972, “
A Probabilistic Approach to the Determination of the Optimum Cutting Conditions
,”
ASME J. Eng. Ind.
0022-0817,
94
(
4
), pp.
1099
1107
.
3.
Agapiou
,
J. S.
, 1992, “
The Optimization of Machining Operations Based on a Combined Criterion, Part 1: The Use of Combined Objectives in Single Pass Operations
,”
ASME J. Eng. Ind.
0022-0817,
114
(
4
), pp.
500
506
.
4.
Wang
,
X. J.
,
Da
,
Z.
,
Balaji
,
A. K.
, and
Jawahir
,
I. S.
, 2002, “
Performance-Based Optimal Selection of Cutting Conditions and Cutting Tools in Multipass Turning Operations Using Genetic Algorithms
,”
Int. J. Prod. Res.
0020-7543,
40
(
9
), pp.
2053
2065
.
5.
Chen
,
M.-C.
, and
Tsai
,
D.-M.
, 1996, “
A Simulated Annealing Approach for Optimization of Multi-Pass Turning Operations
,”
Int. J. Prod. Res.
0020-7543,
34
(
10
), pp.
2803
2825
.
6.
Su
,
C.-T.
, and
Chen
,
M.-C.
, 1999, “
Computer-Aided Optimization of Multi-Pass Turning Operations for Continuous Forms on CNC Lathes
,”
IIE Trans.
0740-817X,
31
(
7
), pp.
583
596
.
7.
Ihsan
,
S. A.
,
Adil
,
B.
,
Turkay
,
D.
, and
Huseyin
,
F. I.
, 1999, “
Dynamic Optimization of Multipass Milling Operations via Geometric Programming
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
(
2
), pp.
297
320
.
8.
Onwubolu
,
G. C.
, and
Kumalo
,
T.
, 2001, “
Optimization of Multipass Turning Operations With Genetic Algorithms
,”
Int. J. Prod. Res.
0020-7543,
39
(
16
), pp.
3727
3745
.
9.
Tandon
,
V.
,
El-Mounayri
,
H.
, and
Kishawy
,
H.
, 2002, “
NC End Milling Optimization Using Evolutionary Computation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
5
), pp.
595
605
.
10.
Gudise
,
V. G.
, and
Venayagamoorthy
,
G. K.
, 2003, “
Comparison of Particle Swarm Optimization and Back Propagation as Training Algorithms for Neural Networks
,”
IEEE Swarm Intelligence Symposium
,
Indianapolis, IN
, Apr., pp.
110
117
.
11.
Bhattacharya
,
R.
,
Joshi
,
A.
, and
Bhattacharya
,
T. K.
, 2006, “
PSO-Based Evolutionary Optimization for Black-Box Modeling of Arbitrary Shaped On-Chip RF Inductors
,”
Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems
, Jan. 18–20, pp.
103
106
.
12.
Xiaohui
,
H.
,
Eberhart
,
R. C.
, and
Yuhui
,
S.
, 2003, “
Engineering Optimization With Particle Swarm
,”
IEEE Swarm Intelligence Symposium
,
Indianapolis, IN
, Apr., pp.
53
57
.
13.
Levin
,
J.
, and
Dutta
,
D.
, 1992, “
Computer-Aided Process Planning for Parallel Machines
,”
J. Manuf. Syst.
0278-6125,
11
(
2
), pp.
79
92
.
14.
Yip-Hoi
,
D.
, and
Dutta
,
D.
, 1995, “
Data Extraction From Geometric Models for Process Planning for Parallel Machines
,”
J. Manuf. Syst.
0278-6125,
14
(
5
), pp.
307
318
.
15.
Kennedy
,
J.
, and
Eberhart
,
R. C.
, 1995, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
,
Perth, Australia
, Nov., pp.
1942
1948
.
16.
Knuth
,
D.
, 1997,
The Art of Computer Programming
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
, Vol.
3
.
You do not currently have access to this content.