We report the use of a high resolution magnetic resonance (MR) imaging technique to monitor the development and maturation of tissue-printed constructs in vivo. Layer-by-layer inkjet printing technology was used to fabricate three different tissue constructs on alginate∕collagen gels: bovine aortic endothelial cell-printed (to represent soft tissue), human amniotic fluid-derived stem cell-printed (to represent hard tissue as they underwent osteogenic differentiation in vivo), and cell-free constructs (scaffold only). The constructs were subcutaneously implanted into athymic mice and regularly monitored using a 7T magnetic resonance imaging (MRI) scanner. The three tissue construct types showed distinct image contrast characteristics due to the different tissue microstructures and biochemical compositions at various time points. In addition, changes in tissue microvasculature were examined with dynamic perfusion MRI. These results indicate that high resolution MRI is a promising method for noninvasive, long-term monitoring of the status of cell-printed construct growth, differentiation, and vascularization.

1.
Mironov
,
V.
,
Boland
,
T.
,
Trusk
,
T.
,
Forgacs
,
G.
, and
Markwald
,
R. R.
, 2003, “
Organ Printing: Computer-Aided Jet-Based 3D Tissue Engineering
,”
Biomaterials
0142-9612,
21
(
4
), pp.
157
161
.
2.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
, 2005, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
0142-9612,
26
(
1
), pp.
93
99
.
3.
Xu
,
T.
,
Gregory
,
C.
,
Molnar
,
P.
,
Cui
,
X.
,
Jalotab
,
S.
,
Bhaduri
,
S. B.
, and
Boland
,
T.
, 2006, “
Viability and Electrophysiology of Neural Cell Structures Made by the Inkjet Printing Method
,”
Biomaterials
0142-9612,
27
(
19
), pp.
3580
3588
.
4.
Nakamura
,
M.
,
Kobayashi
,
A.
,
Takagi
,
F.
,
Watanabe
,
A.
,
Hiruma
,
Y.
,
Ohuchi
,
K.
,
Iwasaki
,
Y.
,
Horie
,
M.
,
Morita
,
I.
, and
Takatani
,
S.
, 2005, “
Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells
,”
Tissue Eng.
1076-3279,
11
(
11–12
), pp.
1658
1666
.
5.
Xu
,
T.
,
Petridou
,
S.
,
Lee
,
E. H.
,
Roth
,
E. A.
,
Vyavahare
,
N. R.
,
Hickman
,
J. J.
, and
Boland
,
T.
, 2004, “
Construction of High-Density Bacterial Colony Arrays and Patterns by the Ink-Jet Method
,”
Biosens. Bioelectron.
0956-5663,
85
(
1
), pp.
29
33
.
6.
Roth
,
E. A.
,
Xu
,
T.
,
Das
,
M.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
, 2004, “
Inkjet Printing for High-Throughput Cell Patterning
,”
Biomaterials
0142-9612,
25
(
17
), pp.
3707
3715
.
7.
Sanjana
,
N. E.
, and
Fuller
,
S. B.
, 2004, “
A Fast Flexible Ink-Jet Printing Method for Patterning Dissociated Neurons in Culture
,”
J. Neurosci. Methods
0165-0270,
136
(
2
), pp.
151
163
.
8.
Turcu
,
F.
,
Tratsk-Nitz
,
K.
,
Thanos
,
S.
,
Schuhmann
,
W.
, and
Heiduschka
,
P.
, 2003, “
Ink-Jet Printing for Micropattern Generation of Laminin for Neuronal Adhesion
,”
J. Neurosci. Methods
0165-0270,
131
(
1–2
), pp.
141
148
.
9.
Campbell
,
P. G.
,
Miller
,
E. D.
,
Fisher
,
G. W.
,
Walker
,
L. M.
, and
Weiss
,
L. E.
, 2005, “
Engineered Spatial Patterns of FGF-2 Immobilized on Fibrin Direct Cell Organization
,”
Biomaterials
0142-9612,
26
(
33
), pp.
6762
6770
.
10.
Miller
,
E. D.
,
Fisher
,
G. W.
,
Weiss
,
L. E.
,
Walker
,
L. M.
, and
Campbell
,
P. G.
, 2006, “
Dose-Dependent Cell Growth in Response to Concentration Modulated Patterns of FGF-2 Printed on Fibrin
,”
Biomaterials
0142-9612,
27
(
10
), pp.
2213
2221
.
11.
Boland
,
T.
,
Tao
,
X.
,
Damon
,
B. J.
,
Manley
,
B.
,
Kesari
,
P.
,
Jalota
,
S.
, and
Bhaduri
,
S.
, 2007, “
Drop-on-Demand Printing of Cells and Materials for Designer Tissue Constructs
,”
Mater. Sci. Eng., C
0928-4931,
27
(
3
), pp.
372
376
.
12.
Boland
,
T.
,
Xu
,
T.
,
Damon
,
B.
, and
Cui
,
X.
, 2006, “
Application of Inkjet Printing to Tissue Engineering
,”
Biotechnology Journal
,
1
(
1
), pp.
910
917
.
13.
De Coppi
,
P.
,
Bartsch
, Jr.,
G.
,
Siddiqui
,
M. M.
,
Xu
,
T.
,
Santos
,
C. C.
,
Perin
,
L.
,
Mostoslavsky
,
G.
,
Serre
,
A. C.
,
Snyder
,
E. Y.
,
Yoo
,
J. J.
,
Furth
,
M. E.
,
Soker
,
S.
, and
Atala
,
A.
, 2007, “
Isolation of Amniotic Stem Cell Lines With Potential for Therapy
,”
Nat. Biotechnol.
1087-0156,
25
(
1
), pp.
100
106
.
14.
Polykandriotis
,
E.
,
Horch
,
R. E.
,
Arkudas
,
A.
,
Labanaris
,
A.
,
Brune
,
K.
,
Greil
,
P.
,
Bach
,
A. D.
,
Kopp
,
J.
,
Hess
,
A.
, and
Kneser
,
U.
, 2006, “
Intrinsic Versus Extrinsic Vascularization in Tissue Engineering
,”
Adv. Exp. Med. Biol.
0065-2598,
585
, pp.
311
326
.
15.
Hong
,
L.
,
Peptan
,
I. A.
,
Xu
,
H.
, and
Magin
,
R. L.
, 2006, “
Nondestructive Evaluation of Osteogenic Differentiation in Tissue-Engineered Constructs
,”
J. Orthop. Res.
0736-0266,
24
(
5
), pp.
889
897
.
16.
Marieb
,
E. N.
, 2000,
Human Anatomy & Physiology
,
Benjamin-Cummings
,
Redwood City, CA
.
17.
Allen
,
L. E.
,
Dubeau
,
L.
,
Alvarez
,
O.
, and
Jones
,
P. A.
, 1990, “
Rapid Degradation of Extracellular Matrix Proteins by Normal Human Uroepithelial Cells
,”
Cancer Res.
0008-5472,
50
(
6
), pp.
1897
1904
.
18.
Potter
,
K.
,
Butler
,
J. J.
,
Adams
,
C.
,
Fishbein
,
K. W.
,
McFarland
,
E. W.
,
Horton
,
W. E.
, and
Spencer
,
R. G.
, 1998, “
Cartilage Formation in a Hollow Fiber Bioreactor Studied by Proton Magnetic Resonance Microscopy
,”
Matrix Biol.
0945-053X,
17
(
7
), pp.
513
523
.
19.
Galbraith
,
S. M.
, 2006, “
MR in Oncology Drug Development
,”
NMR Biomed.
0952-3480,
19
(
6
), pp.
681
689
.
20.
Michaely
,
H. J.
,
Herrmann
,
K. A.
,
Dietrich
,
O.
,
Reiser
,
M. F.
, and
Schoenberg
,
S. O.
, 2006, “
Quantitative and Qualitative Characterization of Vascularization and Hemodynamics in Head and Neck Tumors with a 3D Magnetic Resonance Time-Resolved Echo-Shared Angiographic Technique (TREAT)-Initial Results
,”
Eur. Radiol.
0938-7994,
17
(
4
), pp.
1101
1110
.
You do not currently have access to this content.