In hot strip mills, estimation of rolling variables is of crucial importance to setting up the finishing mill and meeting dimensional control requirements. although the use of physics-based models is preferred by the specialists to keep the fundamental knowledge of the underlying phenomena, many times a purely empirical model, such as an artificial neural network, will provide better predictions although at the cost of losing such fundamental knowledge. This paper presents the application of physics-based and artificial neural networks-based hybrid models for scale breaker entry temperature prediction in a real hot strip mill. The idea behind combining these two types of models is to capitalize in what are often portrayed as their main advantages: (i) keeping the physics knowledge of the process and (ii) providing better predictions. Temperature prediction schemes with different hybrid levels between a pure heat transfer model and an artificial neural network alone were evaluated and compared showing promising results in this case study. Using an artificial neural network together with the heat transfer model helped to achieve better temperature predictions than using the heat transfer model alone in every instance, thereby proving the hybrid schemes attractive to the industry. In this work, three different hybrid schemes combining the knowledge imbedded in a heat transfer model and the prediction capabilities of an artificial neural network in temperature prediction in a hot strip mill were tried. The hybrid models came out quite competitive in this case study. The results support the use of empirical models to foster the prediction ability of physics-based models; that is, they make the case for their joint use as opposed to their exclusive use.
Skip Nav Destination
e-mail: w.m.geerdes@student.utwente.nl
e-mail: mtorresa@hotmail.com
e-mail: mcabrera@mail.uanl.mx
e-mail: acavazos@fime.uanl.mx
Article navigation
February 2008
Technical Briefs
An Application of Physics-Based and Artificial Neural Networks-Based Hybrid Temperature Prediction Schemes in a Hot Strip Mill
Wouter M. Geerdes,
Wouter M. Geerdes
Department of Design, Production and Management,
e-mail: w.m.geerdes@student.utwente.nl
University of Twente
, CTW, Vakgroep OPM, De Horst (building 20), Room N204, Postbus 217, 7500 AE Enschede, The Netherlands
Search for other works by this author on:
Miguel Ángel Torres Alvarado,
Miguel Ángel Torres Alvarado
Posgrado en Ingeniería Eléctrica, Facultad de Ingeniería Mecánica y Eléctrica,
e-mail: mtorresa@hotmail.com
Universidad Autónoma de Nuevo León
, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, 66450 México
Search for other works by this author on:
Mauricio Cabrera-Ríos,
Mauricio Cabrera-Ríos
Posgrado en Ingeniería de Sistemas, Facultad de Ingeniería Mecánica y Eléctrica,
e-mail: mcabrera@mail.uanl.mx
Universidad Autónoma de Nuevo León
, Ciudad Universitaria S/N, Apartado Postal 076 Suc F, San Nicolás de los Garza, Nuevo León, 66450 México
Search for other works by this author on:
Alberto Cavazos
Alberto Cavazos
Posgrado en Ingeniería Eléctrica, Facultad de Ingeniería Mecánica y Eléctrica,
e-mail: acavazos@fime.uanl.mx
Universidad Autónoma de Nuevo León
, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, 66450 México
Search for other works by this author on:
Wouter M. Geerdes
Department of Design, Production and Management,
University of Twente
, CTW, Vakgroep OPM, De Horst (building 20), Room N204, Postbus 217, 7500 AE Enschede, The Netherlandse-mail: w.m.geerdes@student.utwente.nl
Miguel Ángel Torres Alvarado
Posgrado en Ingeniería Eléctrica, Facultad de Ingeniería Mecánica y Eléctrica,
Universidad Autónoma de Nuevo León
, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, 66450 Méxicoe-mail: mtorresa@hotmail.com
Mauricio Cabrera-Ríos
Posgrado en Ingeniería de Sistemas, Facultad de Ingeniería Mecánica y Eléctrica,
Universidad Autónoma de Nuevo León
, Ciudad Universitaria S/N, Apartado Postal 076 Suc F, San Nicolás de los Garza, Nuevo León, 66450 Méxicoe-mail: mcabrera@mail.uanl.mx
Alberto Cavazos
Posgrado en Ingeniería Eléctrica, Facultad de Ingeniería Mecánica y Eléctrica,
Universidad Autónoma de Nuevo León
, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, 66450 Méxicoe-mail: acavazos@fime.uanl.mx
J. Manuf. Sci. Eng. Feb 2008, 130(1): 014501 (5 pages)
Published Online: January 16, 2008
Article history
Received:
August 29, 2006
Revised:
July 2, 2007
Published:
January 16, 2008
Citation
Geerdes, W. M., Alvarado, M. Á. T., Cabrera-Ríos, M., and Cavazos, A. (January 16, 2008). "An Application of Physics-Based and Artificial Neural Networks-Based Hybrid Temperature Prediction Schemes in a Hot Strip Mill." ASME. J. Manuf. Sci. Eng. February 2008; 130(1): 014501. https://doi.org/10.1115/1.2783223
Download citation file:
Get Email Alerts
Related Articles
Effective Determination of Feed Direction and Tool Orientation in Five-Axis Flat-End Milling
J. Manuf. Sci. Eng (December,2010)
Recognition of User-Defined Turning Features for Mill/Turn Parts
J. Comput. Inf. Sci. Eng (September,2007)
Heat Rate Predictions in Humid Air-Water Heat Exchangers Using Correlations and Neural Networks
J. Heat Transfer (April,2001)
Characterization of the Effect of Corrugation Angles on Hydrodynamic and Heat Transfer Performance of Four-Start Spiral Tubes
J. Heat Transfer (December,2001)
Related Proceedings Papers
Related Chapters
Introduction
Marketing of Engineering Consultancy Services: A Global Perspective
Anti-Synchronization Control for Fractional-Order Nonlinear Systems Using Disturbance Observer and Neural Networks
Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation
Manipulability-Maximizing SMP Scheme
Robot Manipulator Redundancy Resolution