Dimensional control has a significant impact on overall product quality and performance of large and complex multistation assembly systems. To date, the identification of process-related faults that cause large variations of key product characteristics (KPCs) remains one of the most critical research topics in dimensional control. This paper proposes a new approach for multiple fault diagnosis in a multistation assembly process by integrating multivariate statistical analysis with engineering models. The proposed method is based on the following steps: (i) modeling of fault patterns obtained using state space representation of process and product information that explicitly represents the relationship between process-related error sources denoted by key control characteristics (KCCs) and KPCs, and (ii) orthogonal diagonalization of measurement data using principal component analysis (PCA) to project measurement data onto the axes of an affine space formed by the predetermined fault patterns. Orthogonal diagonalization allows estimating the statistical significance of the root cause of the identified fault. A case study of fault diagnosis for a multistation assembly process illustrates and validates the proposed methodology.

1.
Ceglarek
,
D.
, and
Shi
,
J.
, 1995, “
Dimensional Variation Reduction for Automotive Body Assembly
,”
Manuf. Rev.
0896-1611,
8
(
2
), pp.
139
154
.
2.
Hu
,
S.
, and
Wu
,
S. M.
, 1992, “
Identifying Root Causes of Variation in Automobile Body Assembly Using Principal Component Analysis
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
20
, pp.
311
316
.
3.
Ceglarek
,
D.
,
Shi
,
J.
, and
Wu
,
S.
, 1994, “
A Knowledge-Based Diagnostic Approach for the Launch of the Autobody Assembly Process
,”
ASME J. Eng. Ind.
0022-0817,
116
(
4
), pp.
491
499
.
4.
Ceglarek
,
D.
, and
Shi
,
J.
, 1996, “
Fixture Failure Diagnosis for the Autobody Assembly Using Pattern Recognition
,”
ASME J. Eng. Ind.
0022-0817,
118
(
1
), pp.
55
66
.
5.
Apley
,
D. W.
, and
Shi
,
J.
, 1998, “
Diagnosis of Multiple Fixture Faults in Panel Assembly
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
4
), pp.
793
801
.
6.
Rong
,
Q.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Dimensional Fault Diagnosis for Compliant Beam Structure Assemblies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
4
), pp.
773
780
.
7.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2002, “
Fault Diagnosis of Multistage Manufacturing Processes by Using State Space Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
313
322
.
8.
Camelio
,
J. A.
, and
Hu
,
S. J.
, 2004, “
Multiple Fault Diagnosis for Sheet Metal Fixtures Using Designated Component Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
91
97
.
9.
Koren
,
Y.
,
Heisel
,
U.
,
Jovane
,
F.
,
Moriwaki
,
T.
,
Pritschow
,
G.
,
Ulsoy
,
G.
, and
Brussel
,
H.
, 1999, “
Reconfigurable Manufacturing Systems
,”
CIRP Ann.
0007-8506,
48
(
2
), pp.
527
540
.
10.
Kong
,
Z.
, and
Ceglarek
,
D.
, 2003, “
Rapid Deployment of Reconfigurable Assembly Fixtures Using Workspace Synthesis and Visibility Analysis
,”
CIRP Ann.
0007-8506,
52
(
1
), pp.
13
16
.
11.
Khan
,
A.
,
Ceglarek
,
D.
, and
Ni
,
J.
, 1998, “
Sensor Location Optimization for Fault Diagnosis in Multi-Fixture Assembly Systems
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
4
), pp.
781
792
.
12.
Khan
,
A.
,
Ceglarek
,
D.
,
Shi
,
J.
,
Ni
,
J.
, and
Woo
,
T. C.
, 1999, “
Sensor Optimization for Fault Diagnosis in Single Fixture System: A Methodology
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
1
), pp.
109
117
.
13.
Ding
,
Y.
,
Kim
,
P.
,
Ceglarek
,
D.
, and
Jin
,
J.
, 2003, “
Optimal Sensor Distribution for Variation Diagnosis in Multi-Station Assembly Processes
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
543
556
.
14.
Djurdjanovic
,
D.
, and
Ni
,
J.
, 2004, “
Measurement Scheme Synthesis in Multi-Station Machining Systems
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
178
188
.
15.
Ceglarek
,
D.
, and
Shi
,
J.
, 1999, “
Fixture Failure Diagnosis for Sheet Metal Assembly With Consideration of Measurement Noise
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
4
), pp.
771
777
.
16.
Rong
,
Q.
,
Shi
,
J.
, and
Ceglarek
,
D.
, 2001, “
Adjusted Least Squares Approach for Diagnosis of Compliant Assemblies in the Presence of Ill-conditioned Problems
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
(
3
), pp.
453
461
.
17.
Barton
,
R. R.
, and
Gonzalez-Barreto
,
D. R.
, 1996, “
Process-Oriented Basis Representations for Multivariate Process Diagnosis
,”
Qual. Eng.
0898-2112,
9
, pp.
107
118
.
18.
Chang
,
M.
, and
Gossard
,
D. C.
, 1998, “
Computational Method for Diagnosis of Variation-Related Assembly Problems
,”
Int. J. Prod. Res.
0020-7543,
36
, pp.
2985
2995
.
19.
Apley
,
D. W.
, and
Shi
,
J.
, 2001, “
A Factor Analysis Method for Diagnosing Variability in Multivariate Manufacturing Processes
,”
Technometrics
0040-1706,
43
(
1
), pp.
84
95
.
20.
Apley
,
D. W.
, and
Lee
,
H. Y.
, 2003, “
Identifying Spatial Variation Patterns in Multivariate Manufacturing Processes: A Blind Separation Approach
,”
Technometrics
0040-1706,
45
(
3
), pp.
220
234
.
21.
Carlson
,
J. S.
, and
Soderberg
,
R.
, 2003, “
Assembly Root Cause Analysis: A Way to Reduce Dimensional Variation in Assembled Products
,”
Int. J. Flex. Manuf. Sys.
,
15
(
2
), pp.
113
150
.
22.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Modeling and Diagnosis of Multistage Manufacturing Processes: Part I: State Space Model
,” Japan/USA Symposium on Flexible Automation, July 23–26, Ann Arbor.
23.
Zhou
,
S.
,
Chen
,
Y.
, and
Shi
,
J.
, 2004, “
Root Cause Estimation and Statistical Testing for Quality Improvement of Multistage Manufacturing Processes
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
1
(
1
), pp.
73
83
.
24.
Djurdjanovic
,
D.
, and
Ni
,
J.
, 2003, “
Bayesian Approach to Measurement Scheme Analysis in Multi-Station Machining Systems
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
, pp.
1117
1130
.
25.
Ding
,
Y.
,
Zhou
,
S.
, and
Chen
,
Y.
, 2005, “
A Comparison of Process Variance Estimation Methods for In-Process Dimensional Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
1
), pp.
69
79
.
26.
Ding
,
Y.
,
Shi
,
J.
, and
Ceglarek
,
D.
, 2002, “
Diagnosability Analysis of Multistage Manufacturing Processes
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
1
), pp.
1
13
.
27.
Zhou
,
S.
,
Ding
,
Y.
,
Chen
,
Y.
, and
Shi
,
J.
, 2003, “
Diagnosability Study of Multistage Manufacturing Processes Based on Linear Mixed-Effects Models
,”
Technometrics
0040-1706,
45
(
4
), pp.
312
325
.
28.
Huang
,
W.
,
Lin
,
J.
,
Bezdecny
,
M.
,
Kong
,
Z.
, and
Ceglarek
,
D.
, 2006, “
Stream-of-Variation Modeling I: A Generic 3D Variation Model for Rigid Body Assembly in Single Station Assembly Processes ASME Trans.
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
1
), pp.
821
831
.
29.
Huang
,
W.
,
Lin
,
J.
,
Kong
,
Z.
, and
Ceglarek
,
D.
, 2006, “
Stream-of-Variation Modeling II: A Generic 3D Variation Model for Rigid Body Assembly in Multi Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
1
), pp.
832
842
.
30.
DCS, 2002,
3DCS-Analyst 6.2.2 User Manual
,
Dimensional Control Systems
, Inc., Troy, MI.
You do not currently have access to this content.