The response of solid to shock compression has been an interesting topic for more than a century. The present work is the first attempt to experimentally show that plastic deformation can be generated in brittle materials by a heat-assisted laser shock peening process, using silicon crystal as a sample material. Strong dislocation activity and large compressive residual stress are induced by this process. The dislocation structure is characterized with transmission electron microscopy and electron backscattered diffraction. The residual stress is measured using Raman scattering. This work presents a fundamental base for the application of laser shock peening in brittle materials to generate large compressive residual stress and plastic deformation for better mechanical properties, such as fatigue life and fracture toughness.

1.
Gregg
,
D. W.
, and
Thomas
,
S. J.
, 1966, “
Momentum Transfer Produced by Focused Laser Giant Pulses
,”
J. Appl. Phys.
0021-8979,
27
, pp.
2787
2789
.
2.
Skeen
,
C. H.
, and
York
,
C. M.
, 1968, “
Laser-Induced Blow-Off Phenomenon
,”
Appl. Phys. Lett.
0003-6951,
12
, pp.
369
371
.
3.
Zhang
,
W.
, and
Yao
,
Y. L.
, 2002, “
Micro-scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
369
378
.
4.
Wu
,
B.
, and
Shin
,
Y. C.
, 2005, “
A Self-Closed Thermal Model for Laser Shock Peening Under the Water Confinement Regime Configuration and Comparisons to Experiments
,”
J. Appl. Phys.
0021-8979,
97
(
11
), p.
113517
.
5.
Cai
,
W.
,
Bulatov
,
V. V.
,
Justo
,
J. F.
,
Argon
,
A. S.
, and
Yip
,
S.
, 2000, “
Intrinsic Mobility of a Dissociated Dislocation in Silicon
,”
Phys. Rev. Lett.
0031-9007,
84
(
15
), pp.
3346
3349
.
6.
Loveridge-Smith
,
A.
, et al.
, 2000, “
Anomalous Elastic Response of Silicon to Uniaxial Shock Compression on Nanosecond Time Scales
,”
Phys. Rev. Lett.
0031-9007,
86
(
11
), pp.
2349
2352
.
7.
Siethoff
,
H.
,
Brion
,
H. G.
,
Ahlborn
,
K.
, and
Schroeter
,
W.
, 1999, “
A Regime of the Yield Point of Silicon at High Temperatures
,”
Appl. Phys. Lett.
0003-6951,
75
(
9
), pp.
1234
1236
.
8.
Siethoff
,
H.
,
Ahlborn
,
K.
, and
Schroeter
,
W.
, 1984, “
Two Independent Mechanisms of Dynamical Recovery in the High-Temperature Deformation of Silicon and Germanium
,”
Philos. Mag. A
0141-8610,
50
(
1
), pp.
L1
L6
.
9.
Rabier
,
J.
, and
Demenet
,
J. L.
, 2000, “
Low Temperature, High Stress Plastic Deformation of Semiconductors: The Silicon Case
,”
Phys. Status Solidi B
0370-1972,
222
(
63
), pp.
63
74
.
10.
Yang
,
E. H.
, and
Fujika
,
H.
, 1999, “
Reshaping of Single-Crystal Silicon Microstructures
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
38
, pp.
1580
1583
.
11.
Fruhauf
,
J.
,
Gartner
,
E.
, and
Jansch
,
E.
, 1999, “
Silicon as a Plastic Material
,”
J. Micromech. Microeng.
0960-1317,
4
, pp.
305
312
.
12.
Frühauf
,
J.
,
Gärtner
,
E.
, and
Jänsch
,
E.
, 2003, “
New Aspects of the Plastic Deformation of Silicon—Prerequisites for the Reshaping of Silicon Microelements
,”
Appl. Phys. A
0947-8396,
68
(
6
), pp.
673
679
.
13.
Zhang
,
X. R.
, and
Xu
,
X.
, 2003, “
Laser-Based High Precision Microscale Bending
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
3
), pp.
512
518
.
14.
Cheng
,
G. J.
, and
Shehadeh
,
M.
, 2005, “
Dislocation Behavior in Silicon Crystal Induced by Laser Shock Peening: A Multiscale Simulation Approach
,”
Scr. Mater.
1359-6462,
53
(
9
), pp.
1013
1018
.
15.
Cheng
,
G. J.
, and
Shehadeh
,
M.
, 2006, “
Multiscale Dislocation Dynamics Analyses of Laser Shock Peening in Silicon Single Crystals
,”
Int. J. Plast.
0749-6419,
22
(
12
), pp.
2171
2194
.
16.
De Wolf
,
I.
,
Maes
,
H. E.
, and
Jones
,
S. K.
, 1996, “
Stress Measurements in Silicon Devices Through Raman Spectroscopy: Bridging the Gap Between Theory and Experiment
,”
J. Appl. Phys.
0021-8979,
79
, pp.
7148
7156
.
17.
Chandrasekhar
,
M.
,
Renucci
,
J. B.
, and
Cardona
,
M.
, 1978, “
Effects of Interband Excitations on Raman Phonons in Heavily Doped n-Si
,”
Phys. Rev. B
0556-2805,
17
, pp.
1623
1633
.
18.
Devaux
,
D.
,
Fabbro
,
R.
,
Tollier
,
L.
, and
Bartnicki
,
E.
, 1993, “
Generation of Shock Waves by Laser-Induced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
74
(
4
), pp.
2268
2273
.
You do not currently have access to this content.