Micro end milling is a fast and direct method of creating net-shaped functional microparts, micromolds, and prototypes. However, the small flexural stiffness, strength, and hardness of the tool limit the efficiency of machining. It is not expected that a new material with increased hardness and yield strength will be developed in the near future that significantly improves the durability for tools manufactured with diameters in the tens to hundreds of microns. To enable a significant increase in performance and productivity requires higher spindle speeds and increased chiploads. However, an increase in chipload is inhibited by the small flexural stiffness and strength of the tools: a direct result of the tool diameter. Laser-assisted micro end milling has the potential to increase the chipload and productivity by locally reducing the workpiece material’s yield strength at the cutting location. This study examines the effect of laser preheating on micro end milling of 6061-T6 aluminum and 1018 steel. Two-flute, 300μmdia, carbide end mills are used to cut 100μm deep slots at a spindle speed of 40,000rpm. The laser power and chipload are varied to show their effect on cutting forces, specific cutting energy, burr formation, surface finish, and temperature. The results are compared to the average material removal temperature given by predictions made from a heat transfer model of the workpiece undergoing laser preheating. Results indicate that chipload and productivity can be significantly increased during dry machining of 6061-T6 aluminum and 1018 steel by localized preheating of the workpiece.

1.
Anon
, 2001, “
MEMS Industry Group Annual Report
,” Pittsburgh.
2.
Bao
,
W. Y.
, and
Tansel
,
I.
, 2000, “
Modeling Micro-End-Milling Operations. Part II: Tool Run-Out
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp,
2175
2192
.
3.
Bao
,
W. Y.
, and
Tansel
,
I.
, 2000, “
Modeling Micro-End-Milling Operations. Part I: Analytical Cutting Force Model
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp,
2155
2173
.
4.
Bao
,
W. Y.
, and
Tansel
,
I.
, 2000, “
Modeling Micro-End-Milling Operations. Part III: Influence of Tool Wear
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp,
2193
2211
.
5.
Damazo
,
B. N.
,
Davies
,
M. A.
,
Dutterer
,
B.
, and
Kennedy
,
M. D.
, 1999, “
A Summary of Micro-Milling Studies
,” in 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology,
McKeown
,
P. E. A.
, ed., Bremen, Germany,
1
, pp,
322
325
.
6.
Kim
,
C.-J.
,
Bono
,
M.
, and
Ni
,
J.
, 2002, “
Experimental Analysis of Chip Formation in Micro-Milling
,” Technical Paper, Society of Manufacturing Engineers, MR, MR02-159.
7.
Lee
,
K.
, and
Dornfeld
,
D. A.
, 2002, “
An Experimental Study on Burr Formation in Micro Milling Aluminum and Copper
,” in North American Manufacturing Research Institution of the Society of Manufacturing Engineers, West Lafayette, IN.
8.
Rahman
,
M.
,
Kumar
,
A.
, and
Prakash
,
J.
, 2001, “
Micro Milling of Pure Copper
,”
J. Mater. Process. Technol.
0924-0136,
116
, pp,
39
43
.
9.
Prakash
,
J. R. S.
,
Rahman
,
M.
,
Senthil
,
K. A.
, and
Lim
,
S. C.
, 2002, “
Model for Predicting Tool Life in Micro Milling of Copper
,”
Chin. J. Mech. Eng.
0577-6686,
15
(
supplement
), pp,
115
120
.
10.
Tansel
,
I.
,
Trujillo
,
M.
,
Nedbouyan
,
A.
,
Velez
,
C.
,
Bao
,
W. Y.
,
Arkan
,
T.
, and
Tansel
,
B.
, 1988, “
Micro End Milling II. Extending Tool Life With a Smart Workpiece Holder (SWH)
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp,
1437
1448
.
11.
Tansel
,
I.
,
Trujillo
,
M.
,
Nedbouyan
,
A.
,
Velez
,
C.
,
Bao
,
W. Y.
,
Arkan
,
T.
, and
Tansel
,
B.
, 1998, “
Micro End Milling I. Wear and Breakage
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp,
1419
1436
.
12.
Tansel
,
I.
,
Trujillo
,
M.
,
Nedbouyan
,
A.
,
Velez
,
C.
,
Bao
,
W. Y.
,
Arkan
,
T.
, and
Tansel
,
B.
, 1998, “
Micro End Milling III. Wear Estimation and Tool Breakage Detection Using Acoustic Emission Signals
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp,
1449
1466
.
13.
Kim
,
C.-J.
,
Mayor
,
J.
, and
Ni
,
J.
, 2004, “
A Static Model of Chip Formation in Microscale Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
710
718
.
14.
Beltrami
,
I.
,
Joseph
,
C.
,
Clavel
,
R.
,
Bacher
,
J.-P.
, and
Bottinelli
,
S.
2004, “
Micro- and Nanoelectric-Discharge Machining
,”
J. Mater. Process. Technol.
0924-0136,
149
, pp,
263
265
.
15.
Lim
,
H. S.
,
Wong
,
Y. S.
,
Raham
,
M.
, and
Lee
,
E. M. K.
, 2003, “
A Study on the Machining of High-Aspect Ratio Micro-Structures Using Micro EDM
,”
J. Mater. Process. Technol.
0924-0136,
140
, pp,
318
325
.
16.
Muttamara
,
A.
,
Fukuzawa
,
Y.
,
Mohri
,
N.
, and
Tani
,
T.
, 2003, “
Probability of Precision Micro-Machining of Insulating Si3N4 Ceramics by EDM
,”
J. Mater. Process. Technol.
0924-0136,
140
, pp,
243
247
.
17.
Schuster
,
R.
,
Kirchner
,
V.
,
Allongue
,
P.
, and
Ertl
,
G.
, 2000, “
Electrochemical Micromachining
,”
Science
0036-8075,
289
(
5476
), pp,
98
101
.
18.
Trueman
,
C. S.
, and
Huddleston
,
J.
, 2000, “
Material Removal by Spalling During EDM of Ceramics
,”
J. Eur. Ceram. Soc.
0955-2219,
20
, pp,
1629
1635
.
19.
Yan
,
M.-T.
,
Haung
,
C.-W.
,
Fang
,
C.-C.
, and
Chang
,
C.-X.
, 2004, “
Development of Prototype Micro-EDM Machine
,”
J. Mater. Process. Technol.
0924-0136,
149
, pp,
99
105
.
20.
Friedrich
,
C.
,
Coane
,
P.
,
Goettert
,
J.
, and
Gopinathin
,
N.
, 1998, “
Direct Fabrication of Deep X-Ray Lithography Masks by Micromechanical Milling
,”
Precis. Eng.
0141-6359,
22
, pp,
164
173
.
21.
Pham
,
D. T.
,
Dimov
,
S. S.
,
Bigot
,
S.
,
Ivanov
,
A.
, and
Popov
,
K.
, 2004, “
Micro-EDM-Recent Developments and Research Issues
,”
J. Mater. Process. Technol.
0924-0136,
149
, pp,
50
57
.
22.
Rajurkar
,
K. P.
, 1990, “
Technology and Research in Electrodischarge and Electrochemical Machining
,” ASME Production Engineering Division (Publication) PED,
43
, pp,
309
336
.
23.
Rajurkar
,
K. P.
,
McGeough
,
J. A.
,
Kozak
,
J.
, and
De Silva
,
A.
, 1999, “
New Developments in Electrochemical Machining
,”
CIRP Ann.
0007-8506,
48
(
2
), pp,
596
579
.
24.
Carter
,
P. W.
, 2001, “
Advances in Rapid Prototyping and Rapid Manufacturing
,” Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (EIC/EMCW Exposition 2001) Cincinnati, pp.
107
114
.
25.
Chua
,
C. K.
,
Leong
,
K. F.
, and
Lim
,
C. S.
, 2003,
Rapid Prototyping—Principals and Applications
, 2nd ed.,
World Scientific
, Singapore.
26.
Frazier
,
A. B.
, 1995, “
The Miniaturization Technologies: Past, Present, and Future
,”
IEEE Trans. Ind. Electron.
0278-0046,
42
(
5
), pp,
423
430
.
27.
Jacobs
,
P. F.
, 1996,
Stereolithography and Other RP&M Technologies: From Rapid Prototyping to Rapid Tooling
,
ASME Press
, New York.
28.
Bruck
,
R.
,
Hahn
,
K.
, and
Stienecker
,
J.
, 1995, “
Technology Description Methods for LIGA Processes
,”
J. Micromech. Microeng.
0960-1317,
5
(
2
), pp,
196
198
.
29.
Ehrfeld
,
W.
,
Abraham
,
M.
,
Ehrfeld
,
U.
,
Lacher
,
M.
, and
Lehr
,
H.
, 1994, “
Materials for LIGA Products
,”
Proceedings IEEE Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems
, Oiso, Japan,
IEEE
, New York, pp.
86
90
.
30.
Hruby
,
J.
, 2002, “
Overview of LIGA Microfabrication
,” High Energy Density and High Power RF. 5th Workshop, Snowbird, UT, pp.
55
61
.
31.
McCormick
,
M.
,
Chowanietz
,
E.
, and
Lees
,
A.
, 1994, “
Microengineering Design and Manufacture Using the LIGA Process
,”
Eng. Sci. Educ. J.
0963-7346,
3
(
6
), pp,
255
262
.
32.
Ruprecht
,
R.
,
Kalb
,
H.
,
Kowanz
,
B.
, and
Bacher
,
W.
, 1996, “
Molding of LIGA Microstructures From Fluorinated Polymers
,”
Microsyst. Technol.
0946-7076,
2
(
4
), pp,
182
185
.
33.
Takacs
,
M.
, and
Vero
,
B.
, 2003, “
Material Structural Aspects of Micro-Scale Chip Removal
,”
Mater. Sci. Forum
0255-5476,
414-415
, pp.
337
342
.
34.
Schaller
,
T.
,
Bohn
,
L.
,
Mayer
,
J.
, and
Schubert
,
K.
, 1999, “
Microstructure Grooves With a Width of Less Than 50μm Cut With Ground Hard Metal Micro End Mills
,”
Precis. Eng.
0141-6359,
23
, pp,
229
235
.
35.
Vogler
,
M. P.
,
Liu
,
X.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Ehmann
,
K. F.
, 2002, “
Development of Meso-Scale Machine Tool (mMT) Systems
,” SME Technical Paper No. MS02-181.
36.
Isomura
,
K.
,
Murayama
,
M.
,
Yamaguchi
,
H.
,
Ijichi
,
N.
,
Asakura
,
H.
,
Saji
,
N.
,
Shiga
,
O.
,
Takahashi
,
K.
,
Tanaka
,
S.
,
Genda
,
T.
, and
Esashi
,
M.
, 2002, “
Development of Microturbocharger and Microcombustor for a Three-Dimensional Gas Turbine at Microscale
,” ASME Turbo Expo, Amsterdam, Vol.
1
, pp,
1127
1134
.
37.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2003, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
2
), pp,
202
209
.
38.
Bass
,
M.
,
Beck
,
D.
, and
Copley
,
S. M.
, 1978, “
Laser Assisted Machining
,” Fourth European Electro-Optics Conference, Utrecht, Netherlands, pp.
233
240
.
39.
Jau
,
B. M.
,
Copley
,
S. M.
, and
Bass
,
M.
, 1981, “
Laser Assisted Machining
,” Ninth North American Manufacturing Research Conference, University Park, PA, pp.
12
15
.
40.
Rajagopal
,
S.
,
Plankenhorn
,
D. J.
, and
Hill
,
V. L.
, 1982, “
Machining Aerospace Alloys With the Aid of a 15kW Laser
,”
J. Appl. Metalwork.
,
2
(
3
), pp,
170
184
.
41.
König
,
W.
, and
Wageman
,
A.
, 1990, “
Fine Machining of Advanced Ceramics
,”
Proc. of 7th International Meeting on Modern Ceramics Technologies
,
P.
Vincenzini
, ed., Montecatini, Italy,
Elsevier
,
Amsterdam
, Vol.
D
, pp,
2769
2783
.
42.
König
,
W.
, and
Zaboklicki
,
A. K.
, 1993, “
Laser-Assisted Hot Machining of Ceramics and Composite Materials
,”
International Conference on Machining of Advanced Materials
,
Jahanmir
,
S.
, ed.,
NIST
, Gaithersburg, NIST Special Publication No. 847, pp,
455
463
.
43.
Rozzi
,
J. C.
,
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2000, “
Experimental Evaluation of the Laser Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp,
666
670
.
44.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2001, “
Experimental Investigation of Thermo-Mechanical Characteristics in Laser-Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp,
639
646
.
45.
Rebro
,
P. A.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2002, “
Laser-Assisted Machining of Reaction Sintered Mullite Ceramics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp,
875
885
.
46.
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
,
Incropera
,
F. P.
, and
Tian
,
Y.
, 2004, “
Laser-Assisted Machining of Magnesia-Partially-Stabilized Zirconia
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp,
42
51
.
47.
Novak
,
J. W.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 1997, “
Assessment of Plasma Enhanced Machining for Improved Machinability of Inconel 718
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
1
), pp,
125
129
.
48.
Shin
,
Y. C.
, and
Kim
,
J. N.
, 1996, “
Plasma Enhanced Machining of Inconel 718
,” ASME International Mechanical Engineering Congress and Exposition, Atlanta, Vol.
MED-4
, pp,
243
249
.
49.
Singh
,
R.
, and
Melkote
,
S. N.
, 2005, “
Experimental Characterization of Laser-Assisted Mechanical Micromachining (LAMM) Process
,” 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, Vol.
16-2
, pp,
957
964
.
50.
Anon
, 1991,
ASM Handbook
,
ASM
, Metals Park, OH, Vol.
4
.
51.
Groot
,
H.
, and
Larsen
,
R.
, 2006, “
Thermophysical Properties of Pelikan Plaka Paint
,” Thermophysical Properties Research Lab (TPRL).
52.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2001,
Fundamentals of Heat and Mass Transfer
, 5 ed.,
Wiley
, New York.
53.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
, 1996, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
0924-0136,
62
, pp,
327
330
.
You do not currently have access to this content.