In milling process, surface topography is a significant factor that affects directly the surface integrity and constitutes a supplement to the form error associated with the workpiece deformation. Based on the tool machining paths and the trajectory equation of the cutting edge relative to the workpiece, a new and general iterative algorithm is developed here for the numerical simulation of the machined surface topography in multiaxis ball-end milling. The influences of machining parameters such as the milling modes, cutter runout, cutter inclination direction, and inclination angle upon the topography and surface roughness values are studied in detail. Compared with existing methods, the basic advantages and novelties of the proposed method can be resumed below. First, it is unnecessary to discretize the cutting edge and tool feed motion and rotation motion. Second, influences of cutting modes and cutter inclinations are studied systematically and explicitly for the first time. The generality of the algorithm makes it possible to calculate the pointwise topography value on any sculptured surface of the workpiece. Besides, the proposed method is proved to be more efficient in saving computing time than the time step method that is commonly used. Finally, some examples are presented and simulation results are compared with experimental ones.

1.
Imani
,
B. M.
, and
Eibestawi
,
M. A.
, 2001, “
Geometric Simulation of Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
177
184
.
2.
Sadeghi
,
M. H.
,
Haghighat
,
H.
, and
Eibestawi
,
M. A.
, 2003, “
A Solider Modeler Based Ball-End Milling Process Simulation
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
22
, pp.
775
785
.
3.
Kim
,
B. H.
, and
Chu
,
C. N.
, 1994, “
Effect of Cutter Mark on Surface Roughness and Scallop Height in Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
26
, pp.
179
188
.
4.
Kim
,
B. H.
, and
Chu
,
C. N.
, 1999, “
Texture Prediction of Milled Surface Using Texture Superposition Method
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
485
494
.
5.
Chen
,
J. S.
,
Huang
,
Y. K.
, and
Chen
,
M. S.
, 2005, “
A Study of the Surface Scallop Generating Mechanism in the Ball-End Milling Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1077
1084
.
6.
Chen
,
J. S.
,
Huang
,
Y. K.
, and
Chen
,
M. S.
, 2005, “
Feedrate Optimization and Tool Profile Modification for the High-Efficiency Ball-End Milling Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1
7
.
7.
Jung
,
T. S.
,
Ming
,
Y. Y.
, and
Lee
,
K. J.
, 2005, “
A New Approach to Analyzing Machined Surface by Ball-End Milling, Part I: Formulation of Characteristic Lines of Cut Remainder
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
25
, pp.
833
840
.
8.
Jung
,
T. S.
,
Ming
,
Y. Y.
, and
Lee
,
K. J.
, 2005, “
A New Approach to Analyzing Machined Surface by Ball-End Milling, Part II: Roughness Prediction and Experimental Verification
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
25
, pp.
841
849
.
9.
Altintas
,
Y.
, and
Lee
,
P.
, 1998, “
Mechanics and Dynamics of Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
684
692
.
10.
Antoniadis
,
A.
,
Savakis
,
C.
,
Bialis
,
N.
, and
Balouktsis
,
A.
, 2003, “
Prediction of Surface Topomorphy and Roughness in Ball-End milling
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
21
, pp.
965
971
.
11.
Bouzakis
,
K. D.
,
Aichouh
,
P.
, and
Efstathiou
,
K.
, 2003, “
Determination of the Chip Geometry, Cutting Force and Roughness in Free Form Surfaces Finishing Milling With Ball End Tools
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
499
514
.
12.
Yan
,
B.
,
Zhang
,
D. W.
,
Xu
,
A. P.
,
Huang
,
T.
, and
Zeng
,
Z. P.
, 2001, “
Modeling and Simulation of Ball-End Milling Surface Topology
,”
J. Comput.-Aided Des. Comput. Graphics
1003-9775,
13
, pp.
135
140
.
13.
Soshi
,
M.
,
Liu
,
X. B.
,
Yamazaki
,
K.
, and
Mori
,
M.
, 2004, “
Development of a Simulation System for Surface Topographic Features in 5-Axis CNC Machining Process, Progress of Machining Technology
,”
Seventh International Conference on Progress of Machining Technology
,
Suzhou
,
China
, pp.
932
937
.
14.
Zhao
,
X. M.
,
Hu
,
D. J.
, and
Zhao
,
G. W.
, 2003, “
Simulation of Workpiece Surface Texture in 5-Axis Control Machining
,”
Journal of Shanghai Jiaotong University
,
37
, pp.
690
694
.
15.
Liu
,
X. B.
,
Soshi
,
M.
,
Sahasrabudhe
,
A.
,
Yamazaki
,
K.
, and
Mori
,
M.
, 2006, “
A Geometrical Simulation System of Ball End Finish Milling Process and Its Application for the Prediction of Surface Micro Features
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
74
85
.
16.
Sriyotha
,
P.
,
Sahasrabudhe
,
A.
,
Yamazaki
,
K.
, and
Mori
,
M.
, 2006, “
Geometrical Modeling of a Ball-End Finish Milling Process for a Surface Finish
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
220
, pp.
467
477
.
17.
Toh
,
C. K.
, 2004, “
Surface Topography Analysis in High Speed Finish Milling Inclined Hardened Steel
,”
Precis. Eng.
0141-6359,
28
, pp.
386
398
.
18.
Gao
,
T.
,
Zhang
,
W. H.
,
Qiu
,
K. P.
, and
Wan
,
M.
, 2006, “
Numerical Simulation of Machined Surface Topography and Roughness in Milling Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
96
103
.
19.
Ikua
,
B. W.
,
Tanaka
,
H.
,
Obata
,
F.
, and
Sakamoto
,
S.
, 2001, “
Prediction of Cutting Force and Machining Error in Ball End Milling of Curved Surface-I Theoretical analysis
,”
Precis. Eng.
0141-6359,
25
, pp.
266
273
.
20.
Ikua
,
B. W.
,
Tanaka
,
H.
,
Obata
,
F.
,
Sakamoto
,
S.
,
Kishi
,
T.
, and
Ishii
,
T.
, 2002, “
Prediction of Cutting Force and Machining Error in Ball End Milling of Curved Surface-II Experimental Verification
,”
Precis. Eng.
0141-6359,
26
, pp.
69
82
.
You do not currently have access to this content.