In two-dimensional (2D) free-form contour machining by using a straight (flat) end mill, conventional contour parallel paths offer varying cutting engagement with workpiece, which inevitably causes the variation in cutting loads on the tool, resulting in geometric inaccuracy of the machined workpiece surface. This paper presents an algorithm to generate a new offset tool path, such that the cutting engagement is regulated at a desired level over the finishing path. The key idea of the proposed algorithm is that the semi-finish path, the path prior to the finishing path, is modified such that the workpiece surface generated by the semi-finish path gives the desired engagement angle over the finishing path. The expectation with the proposed algorithm is that by regulating the cutting engagement angle along the tool path trajectory, the cutting force can be controlled at any desirable value, which will potentially reduce variation of tool deflection, thus improving geometric accuracy of machined workpiece. In this study, two case studies for 2D contiguous end milling operations with a straight end mill are shown to demonstrate the capability of the proposed algorithm for tool path modification to regulate the cutting engagement. Machining results obtained in both case studies reveal far reduced variation of cutting force, and thus, the improved geometric accuracy of the machined workpiece contour.

1.
Kline
,
W. A.
,
Devor
,
R. E.
, and
Lindberg
,
J.
, 1982, “
Prediction of Cutting Forces in End Milling With Application to Cornering Cuts
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
22
, pp.
7
22
.
2.
Kramer
,
T. R.
, 1992, “
Pocket Milling With Tool Engagement Detection
,”
J. Manuf. Syst.
0278-6125,
11
(
2
), pp.
114
123
.
3.
Choy
,
H. S.
, and
Chan
,
K. W.
, 2003, “
Modeling Cutter Swept Angle at Cornering Cut
,”
Int. J. CAD/CAM
,
3
(
1
),
1
12
.
4.
Tlusty
,
J.
,
Smith
,
S.
, and
Zamudio
,
C.
, 1990, “
New NC Routines for Quality in Milling
,”
CIRP Ann.
0007-8506,
39
(
1
), pp.
517
521
.
5.
Smith
,
S.
,
Cheng
,
E.
, and
Zamudio
,
C.
, 1991, “
Computer-Aided Generation of Optimum Chatter-Free Pockets
,”
Int. J. Mater. Prod. Technol.
0268-1900,
28
, pp.
275
283
.
6.
Fussel
,
B. K.
, and
Srinivasan
,
K.
, 1989, “
On-Line Identification of End Milling Process Parameters
,”
ASME J. Eng. Ind.
0022-0817,
111
, pp.
322
330
.
7.
Asai
,
A.
, and
Tsuruhashi
,
T.
, 1988, “
Development of Die-Cutting Feedrate Control System
,”
JSAE Rev.
0389-4304,
9
, pp.
72
82
.
8.
Rehorn
,
A. G.
,
Jiang
,
J.
, and
Orban
,
P. E.
, 2005, “
State-of-the-Art Methods and Results in Tool Condition Monitoring: A Review
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
26
, pp.
693
710
.
9.
Spence
,
A. D.
, and
Altintas
,
Y.
, 1994, “
A Solid Modeler Based Milling Process Simulation and Planning System
,”
ASME J. Eng. Ind.
0022-0817,
116
, pp.
61
69
.
10.
Fussel
,
B. K.
,
Jerard
,
R. B.
, and
Hemmet
,
J. G.
, 2001, “
Robust Feedrate Selection for 3-Axis NC Machining Using Discrete Models
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
214
224
.
11.
Bae
,
S. H.
,
Ko
,
K.
,
Kim
,
B. H.
, and
Choi
,
B. K.
, 2003, “
Automatic Feedrate Adjustment for Pocket Machining
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
495
500
.
12.
Iwabe
,
H.
,
Fuji
,
Y.
,
Saito
,
K.
, and
Kishinami
,
T.
, 1989, “
Study on Corner Cut by End Mill Analysis of Cutting Mechanism and New Cutting Method at Inside Corner
,”
J. Jpn. Soc. Precis. Eng.
0374-3543,
99
(
5
), pp.
841
846
.
13.
Tsai
,
M. D.
,
Takata
,
S.
,
Inui
,
M.
,
Kimura
,
F.
, and
Sata
T.
, 1991, “
Operation Planning Based on Cutting Process Models
,”
CIRP Ann.
0007-8506,
40
(
1
), pp.
95
98
.
14.
Choy
,
H. S.
, and
Chan
,
K. W.
, 2003, “
A Corner-looping Based Tool Path for Pocket Milling
Comput.-Aided Des.
0010-4485,
35
, pp.
155
166
.
15.
Kim
,
H. C.
,
Lee
,
S. G.
, and
Yang
,
M. Y.
, 2006, “
An Optimized Contour Parallel Tool Path for 2D Milling With Flat End Mill
,”
Adv. Manuf. Technol.
,
31
(
5-6
), pp.
567
573
.
16.
Stori
,
J. A.
, and
Wright
,
P. K.
, 2000, “
Constant Engagement Tool Path Generation for Convex Geometries
,”
J. Manuf. Syst.
0278-6125,
19
(
3
), pp.
172
184
.
17.
Wang
,
H.
,
Jang
,
P.
, and
Stori
,
J. A.
, 2005, “
A Metric-Based Approach to Two-Dimensional (2D) Tool-Path Optimization for High-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
1
), pp.
33
48
.
18.
Dragomatz
,
D.
, and
Mann
,
S.
, 1997, “
A Classified Bibliography of Literature on NC Milling Path Generation
,”
Comput.-Aided Des.
0010-4485,
29
(
3
), pp.
239
247
.
19.
Held
,
M.
, 2001, “
VRONI: An Engineering Approach to the Reliable and Efficient Computation of Voronoi Diagrams of Points and Line Segments
,”
Comput. Geom.
0925-7721,
18
(
2
), pp.
95
123
.
20.
Nishida
,
S.
,
Ohtsuka
,
H.
,
Yamaji
,
I.
,
Kakino
,
Y.
,
Ibaraki
,
S.
, and
Matsubara
,
A.
, 2004, “
The Improvement of Productivity and Quality of Die/Mold by Constant Feedrate Control at the Cutting Point
,”
Proc. of 2004 Japan-USA Symposium on Flexible Automation (JUSFA’2004)
, Denver, July 19–21.
21.
Otsuka
,
H.
,
Kakino
,
A.
,
Matsubara
,
A.
,
Nakagawa
,
H.
, and
Hirogaki
,
T.
, 2001, “
A Study on Endmilling of Hardened Steel (2nd Report)–Control for Constant Cutting Forces in Corner Profile Endmilling Including Connection Areas of Tool Paths
,”
J. Jpn. Soc. Precis. Eng.
0374-3543,
67
(
8
), pp.
1294
1298
.
22.
Byrd
,
R. H.
,
Schnabel
,
R. B.
, and
Shultz
,
G. A.
, 1988, “
Approximate Solution of the Trust Region Problem by Minimization Over Two-dimensional Subspace
,”
Math. Program.
0025-5610,
67
(
2
), pp.
247
263
.
You do not currently have access to this content.