The process of coincident wire and powder deposition by laser has recently emerged in research work as a layered manufacturing method with a higher deposition rate than the established laser direct metal deposition technique and as a means of creating functionally graded metallic surface layers in a single pass. This work analytically models the process by accounting for the incoming wire and powder as virtual negative heat sources. The major assumptions of the model are confirmed experimentally and the predicted temperature profiles compared with values measured using contact and pyrometric methods. Model accuracy outside the molten zone is excellent, but this solution does not account for latent heat and intrapool circulation effects so it gives only moderate precision when extrapolated to within the melt pool. Increasing the mass feed rate to the melt pool reduces its depth and the temperature surrounding it—these effects can be quantified in three dimensions by the model.

1.
Syed
,
W. U. H.
,
Pinkerton
,
A. J.
, and
Li
,
L.
, 2004, “
Combined Wire and Powder Feeding Laser Direct Metal Deposition for Rapid Prototyping
,”
Proceedings 23rd International Congress on Applications of Lasers and Electro-optics (ICALEO)
, (CD Rom), San Francisco, CA, October 4-7.
2.
Syed
,
W. U. H.
,
Pinkerton
,
A. J.
, and
Li
,
L.
, 2004, “
Simultaneous Wire- and Powder-feed Direct Metal Deposition: An Investigation of the Process Characteristics and Comparison with Single-feed Methods
,”
J. Laser Appl.
1042-346X, submitted.
3.
Syed
,
W. U. H.
, and
Li
,
L.
, 2004, “
Effect of Wire Feeding Direction and Location in Multiple Layer Diode Laser Direct Metal Deposition
,”
Proceedings 4th International Conference on Photo-Excited Processes and Applications
, Lecce, Italy, September 5–9.
4.
Wang
,
F.
,
Mei
,
J.
, and
Wu
,
X.
, 2005, “
Microstructure Study of Direct Laser Fabricated Compositionally Graded Ti Alloys Using Simultaneous Feed of Powder and Wire
,”
Proceedings 24th International Congress on Applications of Lasers and Electro-optics (ICALEO)
, Miami, FL, October 31-November 3.
5.
Syed
,
W. U. H.
,
Pinkerton
,
A. J.
,
Liu
,
Z.
, and
Li
,
L.
, 2005, “
Single-Step Graded Surface Coating Using Combined Wire and Powder Feeding Laser Cladding
,”
Proceedings 24th International Congress on Applications of Lasers and Electro-optics (ICALEO)
, (CD Rom) Miami, FL, October 31-November 3.
6.
Steen
,
W. M.
, 2003,
Laser Material Processing
,
3rd ed.
,
Springer-Verlag
, London, UK, p. 269.
7.
Steen
,
W. M.
,
Weerasinghe
,
V. M.
, and
Monson
,
P.
, 1986, “
Some Aspects of the Formation of Laser Clad Tracks
,”
Proc. SPIE
0277-786X,
650
, pp.
226
234
.
8.
Kaplan
,
A. F. H.
, and
Groboth
,
G.
, 2001, “
Process Analysis of Laser Beam Cladding
,”
J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
609
614
.
9.
Gedda
,
H.
,
Powell
,
J.
,
Wahlstrom
,
G.
,
Li
,
W.-B.
,
Engstrom
,
H.
, and
Magnusson
,
C.
, 2002, “
Energy Redistribution During CO2 Laser Cladding
,”
J. Laser Appl.
1042-346X,
14
(
2
), pp.
78
82
.
10.
Pinkerton
,
A. J.
, and
Li
,
L.
, 2004, “
An Analytical Model of Energy Distribution in Laser Direct Metal Deposition
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
218
(
4
), pp.
363
374
.
11.
Lampa
,
C.
,
Kaplan
,
A. F. H.
,
Powell
,
J.
, and
Magnusson
,
C.
, 1997, “
Analytical Thermodynamic Model of Laser Welding
,”
J. Phys. D
0022-3727,
30
(
9
), pp.
1293
1299
.
12.
Rostami
,
A. A.
, and
Raisi
,
A.
, 1997, “
Temperature Distribution and Melt Pool Size in a Semi-infinite Body due to a Moving Laser Heat Source
,”
Numer. Heat Transfer, Part A
1040-7782,
31
(
7
), pp.
783
796
.
13.
Han
,
L.
, and
Liou
,
F. W.
, 2004, “
Numerical Investigation of the Influence of Laser Beam Mode on Melt Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
19–20
), pp.
4385
4402
.
14.
Grujicic
,
M.
,
Cao
,
G.
, and
Figliola
,
R. S.
, 2001, “
Computer Simulations of the Evolution of Solidification Microstructure in the LENS Rapid Fabrication Process
,”
Appl. Surf. Sci.
0169-4332,
183
(
1–2
), pp.
43
57
.
15.
Gnanamuthu
,
D. S.
, 1976, “
Cladding
,” US patent No. 3,942,180.
16.
Hensel
,
F.
,
Binroth
,
C.
, and
Sepold
,
G.
, 1987, “
A Comparison of Powder- and Wire-Fed Laser Beam Cladding
,”
Laser Treatment of Materials
,
B. L.
Mordike
, ed.,
DGM Metallurgy Information
,
New York
, pp.
39
44
.
17.
Kim
,
J.-D.
, and
Peng
,
Y.
, 2000, “
Plunging Method for Nd:YAG Laser Cladding With Wire Feeding
,”
Opt. Lasers Eng.
0143-8166,
33
(
4
), pp.
299
309
.
18.
Hinse-Stern
,
A.
,
Burchards
,
D.
, and
Mordike
,
B. L.
, 1987, “
Laser Cladding With Preheated Wires
,”
Laser Treatment of Materials
,
B. L.
Mordike
, ed.,
DGM Metallurgy Information
,
New York
, pp.
223
228
.
19.
Dowden
,
J. M.
, 2001,
The Mathematics of Thermal Modeling: An Introduction to the Theory of Laser Material Processing
,
Chapman & Hall
, London, UK, p. 88.
20.
Pantsar
,
H.
, and
Kujanpaa
,
V.
, 2004, “
Diode Laser Beam Absorption in Laser Transformation Hardening of Low Alloy Steel
,”
J. Laser Appl.
1042-346X,
16
(
3
), pp.
147
153
.
21.
Dausinger
,
F.
, and
Shen
,
J.
, 1993, “
Energy Coupling Efficiency in Laser Surface Treatment
,”
ISIJ Int.
0915-1559,
33
(
9
), pp.
925
933
.
22.
Chande
,
T.
, and
Mazumder
,
J.
, 1984, “
Estimating Effects of Processing Conditions and Variable Properties Upon Pool Shape, Cooling Rates and Absorption Coefficient in Laser Welding
,”
J. Appl. Phys.
0021-8979
56
(
7
), pp.
1981
1986
.
23.
Pantsar
,
H.
, and
Kujanpaa
,
V.
, 2006, “
Effect of Oxide Layer Growth on Diode Laser Beam Transformation Hardening of Steels
,”
Surf. Coat. Technol.
0257-8972,
200
(
8
), pp.
2627
2633
.
24.
Syed
,
W. U. H.
,
Al-Eid
,
E.
,
Pinkerton
,
A. J.
,
Li
,
L.
, and
Pan
,
J.
, 2006, “
Statistical Modeling—The Effect of Processing Conditions on Powder Deposition Efficiency in Direct Laser Deposition
,” International Journal of Manufacturing Technology and Management, submitted.
25.
Rosenthal
,
D.
, 1946, “
The Theory of Moving Sources of Heat and its Application to Metal Treatments
,”
Trans. ASME
0097-6822,
68
(
11
), pp.
849
866
.
26.
Pinkerton
,
A. J.
, 2004, “
A Mathematical and Experimental Investigation of Thin Wall Laser Direct Metal Deposition
,” PhD Thesis, Department of Mechanical, Aerospace and Manufacturing Engineering, UMIST, Manchester, UK.
27.
Pinkerton
,
A. J.
, and
Li
,
L.
, 2005, “
An Experimental and Numerical Study of the Influence of Diode Beam Shape on Thin Wall Direct Metal Deposition
,”
J. Laser Appl.
1042-346X,
17
(
1
), pp.
47
56
.
28.
Diniz Neto
,
O. O.
, and
Vilar
,
R.
, 2002, “
Physical-Computational Model to Describe the Interaction Between a Laser Beam and a Powder Jet in Laser Surface Processing
,”
J. Laser Appl.
1042-346X,
14
(
1
), pp.
46
51
.
29.
Pinkerton
,
A. J.
, and
Li
,
L.
, 2004, “
Modeling Powder Concentration Distribution From a Coaxial Deposition Nozzle for Laser-Based Rapid Tooling
,”
J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
34
42
.
30.
Han
,
L.
,
Liou
,
F. W.
, and
Musti
,
S.
, 2005, “
Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process
,”
J. Heat Transfer
0022-1481,
127
(
9
), pp.
1005
1014
.
31.
Griffith
,
M. L.
,
Ensz
,
M. T.
,
Puskar
,
J. D.
,
Robino
,
C. V.
,
Brooks
,
J. A.
,
Philliber
,
J. A.
,
Smugeresky
,
J. E.
, and
Hofmeister
,
W. H.
, 2000, “
Understanding the Microstructure and Properties of Components Fabricated by Laser Engineered Net Shaping (LENS)
,”
Proceedings Solid Freeform and Additive Fabrication Conference
,
Materials Research Society
, San Francisco, CA, April 24–26, pp.
9
20
.
32.
Peng
,
X. F.
,
Lin
,
X. P.
,
Lee
,
D. J.
,
Yan
,
Y.
, and
Wang
,
B. X.
, 2001, “
Effects of Initial Molten Pool and Marangoni Flow on Solid Melting
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
2
), pp.
457
470
.
33.
Limmaneevichitr
,
C.
, and
Kou
,
S.
, 2000, “
Experiments to Simulate Effect of Marangoni Convection on Weld Pool Shape
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
79
(
8
), pp.
231
237
.
34.
Wang
,
Y.
, and
Tsai
,
H. L.
, 2001, “
Effects of Surface Active Elements on Weld Pool Fluid Flow and Weld Penetration in Gas Metal Arc Welding
,”
Metall. Mater. Trans. B
1073-5615,
32
(
3
), pp.
501
515
.
35.
Heiple
,
C. R.
, and
Roper
,
J. R.
, 1981, “
Effects of Minor Elements on GTAW Fusion-Zone Shape
,” technical report RFP-3224, Rockwell International Corp, CO, United States.
36.
Picasso
,
M.
, and
Hoadley
,
A. F. A.
, 1994, “
Finite Element Simulation of Laser Surface Treatments Including Convection in the Melt Pool
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
4
(
1
), pp.
61
83
.
37.
Jendrzejewski
,
R.
,
Kreja
,
I.
, and
Sliwinski
,
G.
, 2004, “
Temperature Distribution in Laser-Clad Multi-layers
,”
Mater. Sci. Eng., A
0921-5093,
379
(
1–2
), pp.
313
320
.
38.
Kim
,
J. D.
, and
Peng
,
Y.
, 2000, “
Temperature Field and Cooling Rate of Laser Cladding With Wire Feeding
,”
KSME Int. J.
1226-4865,
14
(
8
), pp.
851
860
.
You do not currently have access to this content.