Dimensional variation is inherent to any manufacturing process. In order to minimize its impact on assembly products it is important to understand how the variation propagates through the assembly process. Unfortunately, manufacturing processes are complex and in many cases highly nonlinear. Traditionally, assembly process modeling has been approached as a linear process. However, many assemblies undergo highly complex nonlinear physical processes, such as compliant deformation, contact interaction, and welding thermal deformation. This paper presents a new variation propagation methodology considering the compliant contact effect, which will be analyzed through nonlinear frictional contact analysis. Its variation prediction will be accurately and efficiently conducted using an enhanced dimension reduction method. A case study is presented to show the applicability of the proposed methodology.

1.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Modeling and Diagnosis of Multistage Manufacturing Process: Part I—State Space Model
,”
Proceedings Japan–USA Symposium of Flexible Automation
, Ann Arbor, MI, July 23–26.
2.
Mantripragada
,
R.
, and
Whitney
,
D. E.
, 1999, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
1042-296X,
115
(
1
), pp.
124
140
.
3.
Liu
,
S. C.
, and
Hu
,
S. J.
, 1997, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
368
374
.
4.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
673
681
.
5.
Camelio
,
J.
, and
Hu
,
S. J.
, 2004, “
Compliant Assembly Variation Analysis Using Components Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
2
), pp.
355
360
.
6.
Dahlstrom
,
S.
, and
Lindkvist
,
L.
, 2006, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,” Ph.D. thesis, Chalmers University of Technology, Gothenburg, Sweden.
7.
Cai
,
W.
,
Hsieh
,
C.
,
Long
,
Y.
,
Martin
,
S.
, and
Oh
,
K.
, 2006, “
Digital Panel Assembly Methodologies and Applications for Compliant Sheet Components
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
270
279
.
8.
Myers
,
H. R.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology
,
Wiley
, New York, NY.
9.
Youn
,
B. D.
,
Choi
,
K. K.
,
Gu
,
L.
, and
Yang
,
R. J.
, 2004, “
Reliability-Based Design Optimization for Crashworthiness of Side Impact
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
3–4
), pp.
272
283
.
10.
Wu
,
W.-T.
,
Griffin
,
J. H.
, and
Wickert
,
J. A.
, 1995, “
Perturbation Method for the Floquet Eigenvalues and Stability Boundary of Periodic Linear Systems
,”
J. Sound Vib.
0022-460X,
182
(
2
), pp.
245
257
.
11.
Alefeld
,
G.
, and
Herzberger
,
J.
, 1983,
Introduction to Interval Computations
,
Academic
, New York, NY.
12.
Halder
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
, New York, NY.
13.
Xu
,
H.
, and
Rahman
,
S.
, 2004, “
A Generalized Dimension-Reduction Method for Multi-dimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
1992
2019
.
14.
Youn
,
B. D.
,
Zhimin
,
X.
,
Wells
,
L. J.
, and
Lamb
,
D. A.
, 2006, “
The Enhanced Dimension-Reduction (eDR) Method for Reliability-Based Robust Design Optimization
,”
Proceedings AIAA-MAO 2006-6977
, Portsmouth, VA, Sept. 6–8.
15.
Chase
,
K. W.
, and
Parkinson
,
A. R.
, 1991, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
0934-9839,
3
, pp.
23
37
.
16.
Rahman
,
S.
, and
Xu
,
H.
, 2004, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
19
, pp.
393
408
.
17.
Youn
,
B. D.
,
Xi
,
Z.
,
Wells
,
L. J.
, and
Lamb
,
D. A.
, 2006, “
Stochastic Response Surface Using the Enhanced Dimension-Reduction (eDR) Method for Reliability-Based Robust Design Optimization
,”
Proceedings 11th AIAA/ISSMO MAO Conference
, Portsmouth, VA, Sept. 6–8.
18.
Johnson
,
N. L.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
, 1994,
Continuous Univariate Distributions
,
Wiley-Interscience
, New York, NY.
You do not currently have access to this content.