Abstract

A stream-of-variation analysis (SOVA) model for three-dimensional (3D) rigid-body assemblies in a single station is developed. Both product and process information, such as part and fixture locating errors, are integrated in the model. The model represents a linear relationship of the variations between key product characteristics and key control characteristics. The generic modeling procedure and framework are provided, which involve: (1) an assembly graph (AG) to represent the kinematical constraints among parts and fixtures, (2) an unified method to transform all constraints (mating interface and fixture locators etc.) into a 3-2-1 locating scheme, and (3) a 3D rigid model for variation flow in a single-station process. The generality of the model is achieved by formulating all these constraints with an unified generalized fixture model. Thus, the model is able to accommodate various types of assemblies and provides a building block for complex multistation assembly model, in which the interstation interactions are taken into account. The model has been verified by using Monte Carlo simulation and a standardized industrial software. It provides the basis for variation control through tolerance design analysis, synthesis, and diagnosis in manufacturing systems.

1.
Ceglarek
,
D.
, and
Shi
,
J.
, 1995, “
Dimensional Variation Reduction for Automotive Body Assembly: A Case Study
,”
Manuf. Rev.
0896-1611,
8
(
2
), pp.
139
154
.
2.
Ceglarek
,
D.
,
Huang
,
W.
,
Zhou
,
S.
,
Ding
,
Y.
,
Ramesh
,
K.
, and
Zhou
,
Y.
, 2004, “
Time-Based Competition in Manufacturing: Stream-of-Variation Analysis (SOVA) Methodology—Review
,”
Int. J. Flex. Manuf. Syst.
,
16
(
1
), pp.
11
44
.
3.
Agrawal
,
R.
,
Lawless
,
J. F.
, and
Mackay
,
R. J.
, 1999, “
Analysis of Variation Transmission in Manufacturing Processes—Part II
,”
J. Quality Technol.
0022-4065,
31
(
2
), pp.
143
154
.
4.
Hsieh
,
C. C.
, and
Oh
,
K. P.
, 1996, “
Simulation and Optimization of Assembly Processes Involving Flexible Parts
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
(
3
), pp.
377
382
.
5.
Camelio
,
J. A.
, and
Hu
,
S. J.
, 2004, “
Multiple Fault Diagnosis for Sheet Metal Fixtures Using Designated Component Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
91
97
.
6.
Chang
,
M.
, and
Gossard
,
D. C.
, 1997, “
Modeling the Assembly of Compliant, Non-Ideal Parts
,”
Comput.-Aided Des.
0010-4485,
29
(
10
), pp.
701
708
.
7.
Ceglarek
,
D.
, and
Shi
,
J.
, 1998, “
Design Evaluation of Sheet Metal Joints for Dimensional Integrity
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
452
460
.
8.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2002, “
Design Evaluation of Multi-Station Manufacturing Processes by Using State Space Approach
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
408
418
.
9.
Huang
,
W.
, 2004, “
Methodologies for Modeling and Analysis of Stream-of-Variation in Compliant and Rigid Assembly
,” Ph.D. thesis, University of Wisconsin-Madison.
10.
Huang
,
W.
, and
Ceglarek
,
D.
, 2005, “
Statistical Modal Analysis Methodology for Form Error Modeling
,”
IIE Trans.
0740-817X, in review.
11.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
States Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
756
762
.
12.
Mantripragada
,
R.
, and
Whitney
,
D. E.
, 1998, “
Modeling and Controlling Variation in Mechanical Assemblies Using State Transition Models
,”
Proc. of 1998 IEEE Int. Conf. on Robotics & Automation
, Leuven, Belgium, pp.
219
226
.
13.
Shalon
,
D.
,
Gossard
,
D.
,
Ulrich
,
K.
, and
Fitzpatrick
,
D.
, 1992, “
Representing Geometric Variations in Complex Structural Assemblies on CAD Systems
,”
ASME Advances in Design Automation
,
ASME
, New York, Vol.
2
, pp.
121
132
.
14.
Chase
,
K. W.
,
Magleby
,
S. P.
, and
Glancy
,
C. G.
, 1998, “
A Comprehensive System for Computer-Aided Tolerance Analysis of 2D and 3D Mechanical Assemblies
,”
Geometric Design Tolerance: Theories, Standards and Applications
,
Chapman and Hall
, London, pp.
294
307
.
15.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
, 1998, “
General 3-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
IIE Trans.
0740-817X,
30
, pp.
367
377
.
16.
Hong
,
Y. S.
, and
Chang
,
T.-C.
, 2002, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
0020-7543,
40
(
11
), pp.
2425
2459
.
17.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
, 2000, “
Error Compensation in Machine Tools—A review, Part I: Geometric, Cutting-Force Induced and Fixture Dependent Errors
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
1235
1256
.
18.
Chou
,
Y.-C.
,
Chandru
,
V.
, and
Barash
,
M. M.
, 1989, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
111
, pp.
299
306
.
19.
Choudhuri
,
S. A.
, and
De Meter
,
E. C.
, 1999, “
Tolerance Analysis of Machining Fixture Locators
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
273
281
.
20.
Huang
,
Q.
,
Zhou
,
S.
,
Shi
,
J.
, 2000, “
Stream of Variation Modeling and Diagnosis of Multi-Station Machining Processes
,”
Proc. of 2000 ASME IMECE
,
ASME
, New York, MED-Vol.
11
, pp.
81
88
.
21.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
2
), pp.
96
309
.
22.
Huang
,
W.
,
Lin
,
J.
,
Kong
,
Z.
, and
Ceglarek
,
D.
, 2007, “
Stream-of-Variation (SOVA) Modeling—II: A Generic 3D Variation Model for Rigid Body Assembly in Multi-Station Assembly Processes
,” revised,
ASME J. Manuf. Sci. Eng.
1087-1357, to be published.
23.
Huang
,
W.
,
Phoomboplab
,
T.
, and
Ceglarek
,
D.
, 2006, “
Explicit Yield Model (EYM) for Tolerance Synthesis of Large Scale Complex Assemblies
,” ASME Paper No. ASME MSEC2006-21074.
24.
Lawless
,
J. F.
,
Mackay
,
R. J.
, and
Robinson
,
J. A.
, 1999, “
Analysis of Variation Transmission in Manufacturing Processes—Part I
,”
J. Quality Technol.
0022-4065,
31
(
2
), pp.
131
142
.
25.
Huang
,
W.
, and
Ceglarek
,
D.
, 2005, “
Model Complexity Reduction in Stream-of-Variation Analysis for Compliant Sheet Metal Assembly
,” presented at the
2005 CIRP Seminar on Computer-Aided Tolerancing
, Tempe, AZ, April 11–12, p.
CIRP
-2004-
40
.
26.
Merkley
,
K. G.
, 1998, “
Tolerance Analysis of Compliant Assemblies
,” Ph.D. thesis, Brigham Young University.
27.
Huang
,
W.
, and
Ceglarek
,
D.
, 2002, “
Mode-Based Decomposition of Part Form Error by Discrete-Cosine-Transform With Implementation to Assembly and Stamping System With Compliant Parts
,”
CIRP Ann.
0007-8506,
51
(
1
), pp.
21
26
.
28.
Camelio
,
J.
, 2002, “
Monitoring and Diagnosis of Dimensional Variation for Assembly Systems With Compliant Parts
,” Ph.D. thesis, Dept. of Mech. Eng. & Applied Mechanics, University of Michigan, Ann Arbor.
29.
Asada
,
H.
, and
By
,
A.
, 1985, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly With Automatically Reconfigurable Fixtures
,”
IEEE Trans. Rob. Autom.
1042-296X,
34
(
3
), pp.
337
345
.
30.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
1997, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
593
602
.
31.
Huang
,
W.
, and
Ceglarek
,
D.
, 2005, “
Model Complexity Reduction in Stream of Variation for Compliant Sheet Metal Assembly
,” 9th CIRP Int. Seminar on Computer Aided Tolerancing, Arizona.
32.
Wang
,
M. Y.
, and
Pelinescu
,
D. M.
, 2001, “
Optimizing Fixture Layout in a Point Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
3
), pp.
312
323
.
33.
Crane
, III.,
C. D.
, and
Duffy
,
J.
, 1998,
Kinematic Analysis of Robotic Manipulators
,
Cambridge University Press
, Cambridge, England.
You do not currently have access to this content.