In this paper an analytical model for stability limit predictions in turning and boring operations is proposed. The multidimensional model includes the three-dimensional geometry of the processes resulting in an eigenvalue problem. In addition, a model for the chip thickness at the insert nose is proposed to observe the effect of the insert nose radius on the chatter stability limit. The model represents a development over existing ones due to accurate treatment of the multidimensional process dynamics and geometry, and resulting practical formulas for stability limit predictions. Chatter experiments are conducted for both turning and boring in order to verify the model predictions, and overall, an acceptable agreement is observed.
Issue Section:
Technical Papers
1.
Tlusty
, J.
, and Polacek
, M.
, 1963, “The Stability of Machine Tools Against Self Excited Vibrations in Machining
,” Proceedings of the International Research in Production Engineering Conference
, Pittsburgh, PA
, ASME
, New York
, pp. 465
–474
.2.
Tobias
, S. A.
, and Fishwick
, W.
, 1958, “The Chatter of Lathe Tools Under Orthogonal Cutting Conditions
,” Trans. ASME
0097-6822, 80
, pp. 1079
–1088
.3.
Minis
, I.
, and Yanushevsky
, T.
, 1993, “A New Theoretical Approach for the Prediction of the Machine Tool Chatter in Milling
,” ASME J. Eng. Ind.
0022-0817, 115
, pp. 1
–8
.4.
Budak
, E.
, and Altintas
(Y)
, 1998, “Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation—Part II: Application to Common Milling Systems
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 120
, pp. 22
–36
.5.
Marui
, E.
, Ems
, S.
, and Kato
, S.
, 1983, “Chatter Vibration of Lathe Tools—Part 1: General Characteristics of Chatter Vibration
,” ASME J. Eng. Ind.
0022-0817, 105
, pp. 100
–106
.6.
Marui
, E.
, Ems
, S.
, and Kato
, S.
, 1983, “Chatter Vibration of Lathe Tools—Part 2: On the Mehanisms of Energy Supply
,” ASME J. Eng. Ind.
0022-0817, 105
, pp. 107
–113
.7.
Kaneko
, T.
, Sato
, H.
, Tani
, Y.
, and O-Hori
, M.
, 1984, “Self-Excited Chatter and Its Marks in Turning
,” ASME J. Eng. Ind.
0022-0817, 106
, pp. 106
–228
.8.
Minis
, I. E.
, Magrab
, E. B.
, and Pandelidis
, I. O.
, 1990, “Improved Methods for the Prediction of Chatter in Turning—Part 3: A Generalized Linear Theory
,” ASME J. Eng. Ind.
0022-0817, 112
, pp. 12
–20
.9.
Rao
, C. B.
, and Shin
, Y. C.
, 1999, “A Comprehensive Dynamic Cutting Force Model for Chatter Prediction in Turning
,” Int. J. Mach. Tools Manuf.
0890-6955, 39
, pp. 1631
–1654
.10.
Budak
, E.
, and Altintas
, Y.
, 1998, “Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 120
, pp. 22
–30
.11.
Clancy
, B. E.
, and Shin
, Y. C.
, 2002, “A Comprehensive Chatter Prediction Model for Face Turning Operation Including Tool Wear Effect
,” Int. J. Mach. Tools Manuf.
0890-6955, 42
, pp. 1035
–1044
.12.
Atabey
, F.
, Lazoglu
, I.
, and Altintas
, Y.
, 2003, “Mechanics of Boring Processes—Part I
,” Int. J. Mach. Tools Manuf.
0890-6955, 43
, pp. 463
–476
.13.
Lazoglu
, I.
, Atabey
, F.
, and Altintas
, Y.
, 2002, “Dynamic of Boring Processes—Part III: Time Domain
,” Int. J. Mach. Tools Manuf.
0890-6955, 42
, pp. 1567
–1576
.14.
Ozdoganlar
, O. B.
, and Endres
, W. J.
, 2000, “An Analytical Representation of Chip Area for Corner-Radiused Tools Under Depth-of-Cut and Feed Variations
,” ASME J. Manuf. Sci. Eng.
1087-1357, 122
, pp. 660
–665
.15.
Ozdoganlar
, O. B.
, and Endres
, W. J.
, 1998, “An Analytical Stability Solution for the Turning Process With Depth-Direction Dynamics and Corner-Radiused Tooling
,” Proc. of ASME IMECE’98, Symp. on Advances in Modeling, Monitoring, and Control of Machining Systems
, ASME
, New York, Vol. 64
, pp. 511
–518
.16.
Ozdoganlar
, O. B.
, and Endres
, W. J.
, 1997, “A Structured Fully-Analytical Approach to Multi-Degree-of-Freedom Time-Invariant Stability Analysis for Machining
,” Proc. of Symp. on Pred. Modeling in Metal Cutting as Means of Bridging Gap Between Theory and Practice
, ASME
, New York, ASME IMECE’97, Vol. 6-2
, pp. 153
–160
.17.
Reddy
, R. G.
, Ozdoganlar
, O. B.
, Kapoor
, S. G.
, DeVor
, R. E.
, and Liu
, X.
, 2002, “A Stability Solution for the Axial Contour-Turning Process
,” ASME J. Manuf. Sci. Eng.
1087-1357, 124
, pp. 581
–587
.18.
Chandiramani
, N. K.
, and Pothala
, T.
, 2006, “Dynamics of 2-DOF Regenerative Chatter During Turning
,” J. Sound Vib.
0022-460X, 290
, pp. 448
–464
.19.
Ozlu
, E.
, and Budak
, E.
, “Comparison of One Dimensional Oriented Transfer Function Stability Model vs. Multi Dimensional Stability Model in Turning Operations
,” Int. J. Mach. Tools Manuf.
0890-6955, .20.
Armarego
, E. J. A.
, and Brown
, R. H.
, 1969, The Machining of Metals
, Prentice-Hall
, Englewood Cliffs, NJ.21.
Armarego
, E. J. A.
, and Whitfield
, R. C.
, 1985, “Computer Based Modeling of Popular Machining Operations for Force and Power Predictions
,” CIRP Ann.
0007-8506, 34
, pp. 65
–69
.22.
Budak
, E.
, Altintas
, Y.
, and Armarego
, E. J. A.
, 1996, “Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,” ASME J. Manuf. Sci. Eng.
1087-1357, 118
, pp. 216
–224
.23.
Altintas
, Y.
, and Budak
, E.
, “Analytical Prediction of Stability Lobes in Milling
,” CIRP Ann.
0007-8506, 44
, pp. 357
–362
.24.
Altintas
, Y.
, and Weck
, M.
, 2004, “Chatter Stability of Metal Cutting and Grinding
,” CIRP Ann.
0007-8506, 53
(2
), pp. 619
–642
.25.
Altintas
, Y.
, 2000, Manufacturing Automation
, Cambridge University Press
, Cambridge, England.26.
Ozlu
, E.
, and Budak
, E.
, 2006, “Analytical Modeling of Chatter Stability in Turning and Boring Operations—Part II: Experimental Verification
,” ASME J. Manuf. Sci. Eng.
1087-1357, 129
(4
), pp. 733
–739
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.