This paper presents an effective and low-cost method for fabricating spherical and aspheric microlenses based on excimer laser LIGA-like processes. It is based on a newly developed excimer laser micromachining technique that can accurately machine a 3D microstructure with a predetermined continuous surface profile. The method is called the planetary scanning method since it is based on a combination of sample rotation and revolution and a concept of laser machining probability. Spherical and aspheric microlenses with precise and smooth surface profiles are fabricated by direct laser machining on polymer materials. Laser-machined microlenses are replicated by electroforming to obtain inverse metal molds. Finally, plastic microlenses are replicated from these metal molds using hot embossing method. The profile accuracy and surface roughness of the produced microlenses at each stage have been measured and monitored. The average surface profile accuracy is better than 1μm and average surface roughness is less than 10nm. Optical performance of the fabricated microlenses is evaluated by measuring the light intensity distribution at the focal plane and the focal length. Experimental data show that the characteristics of fabricated spherical and aspheric microlenses are well matched to the theoretical predictions, which demonstrates the controllability and accuracy of this micromachining process. Potential applications and further developments will be addressed.

1.
Sinzinger
,
S.
, and
Jahns
,
J.
, 2003,
Microoptics
,
2nd ed.
,
Wiley-VCH
, Weinheim, Germany.
2.
Kress
,
B.
, and
Meyrueis
,
P.
, 2000,
Digital Diffractive Optics
,
J Wiley
, New York.
3.
Sakai
,
J.-I.
, and
Kimura
,
T.
, 1980, “
Design of a Miniature Lens for Semiconductor Laser to Single-Mode Fiber Coupling
,”
IEEE J. Quantum Electron.
0018-9197,
16
(
10
), pp.
1059
1067
.
4.
Nicia
,
A.
, 1981, “
Lens Coupling in Fiber-Optic Devices: Efficiency Limit
,”
Appl. Opt.
0003-6935,
20
(
18
), pp.
3136
3145
.
5.
Sumida
,
M.
, and
Takemoto
,
K.
, 1984, “
Lens Coupling of Laser Diodes to Single-Mode Fibers
,”
J. Lightwave Technol.
0733-8724,
2
(
3
), pp.
305
311
.
6.
Hillerich
,
B.
, 1989, “
Influence of Lens Imperfections With LD and LED to Single-Mode Fiber Coupling
,”
J. Lightwave Technol.
0733-8724,
7
(
1
), pp.
77
86
.
7.
Edwards
,
C. A.
,
Presby
,
H. M.
, and
Dragone
,
C.
, 1993, “
Ideal Microlenses for Laser to Fiber Coupling
,”
J. Lightwave Technol.
0733-8724,
11
(
2
), pp.
252
257
.
8.
Park
,
E.-H.
,
Kim
,
M.-J.
, and
Kwon
,
Y.-S.
, 1999, “
Microlens for Efficient Coupling Between LED and Optical Fiber
,”
IEEE Photonics Technol. Lett.
1041-1135,
11
(
4
), pp.
439
441
.
9.
Tein
,
C.-H.
,
Chien
,
Y.-E.
,
Chiu
,
Y.
, and
Shien
,
H.-P.
, 2003, “
Microlens Array Fabricated by Excimer Laser Micromachining With Gray-Tone Photolithography
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
42
, pp.
1280
1283
.
10.
Zimmer
,
K.
,
Hirsch
,
D.
, and
Bigl
,
F.
, 1996, “
Excimer Laser Machining for the Fabrication of Analogous Microstructures
,”
Appl. Surf. Sci.
0169-4332,
96-98
, pp.
425
429
.
11.
Naessens
,
K.
,
Ottevaere
,
H.
,
Daele
,
P. V.
, and
Baets
,
R.
, 2003, “
Flexible Fabrication of Microlenses in Polymer Layers With Excimer Laser Ablation
,”
Appl. Surf. Sci.
0169-4332,
208-209
(
1
), pp.
159
164
.
12.
Naessens
,
K.
,
Ottevaere
,
H.
,
Baets
,
R.
,
Daele
,
P. V.
, and
Thienpont
,
H.
, 2003, “
Direct Writing of Microlenses in Polycarbonate With Excimer Laser Ablation
,”
Appl. Opt.
0003-6935,
42
(
31
), pp.
6349
6359
.
13.
Brannon
,
J.
, 1993,
Excimer Laser Ablation and Etching
,
American Vacuum Society
, New York.
14.
Galantucci
,
L. M.
, and
Giusti
,
F.
, 1998, “
Excimer Laser Cutting: Experimental Characterization and 3D Numerical Modeling for Polyester Resins
,”
CIRP Ann.
0007-8506,
47
, pp.
141
144
.
15.
Zimmer
,
K.
,
Braun
,
A.
, and
Bigl
,
F.
, 2000, “
Combination of Different Processing Methods for the Fabrication of 3D Polymer Structures by Excimer Laser Machining
,”
Appl. Surf. Sci.
0169-4332,
154-155
, pp.
601
604
.
16.
Braun
,
A.
,
Zimmer
,
K.
,
Hosselbarth
,
B.
,
Meinhardt
,
J.
,
Bigl
,
F.
, and
Mehnert
,
R.
, 1998, “
Excimer Laser Micromachining and Replication of 3D Optical Surface
,”
Appl. Surf. Sci.
0169-4332,
127-129
, pp.
911
914
.
17.
Arnold
,
J.
,
Dasbach
,
U.
,
Ehrfeld
,
W.
,
Hesch
,
K.
, and
Lowe
,
H.
, 1995, “
Combination of Excimer Laser Micromachining and Replication Processes Suited for Large Scale Production
,”
Appl. Surf. Sci.
0169-4332,
86
(
1
), pp.
251
258
.
18.
Lee
,
Y.-C.
,
Chen
,
C.-M.
, and
Wu
,
C.-Y.
, 2005, “
A New Excimer Laser Micromachining Method for Axially Symmetric 3D Microstructures With Continuous Surface Profiles
,”
Sens. Actuators, A
0924-4247,
117
(
2
), pp.
349
355
.
19.
Nelder
,
A.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
7
, pp.
308
313
.
20.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1986,
Numerical Recipes
,
Cambridge U. P.
, New York.
21.
Dennis
,
J. K.
, and
Such
,
T. E.
, 1993,
Nickel and Chromium Plating
,
3rd ed.
,
Woodhead
, Cambridge, UK.
You do not currently have access to this content.