This paper presents a novel method to assess nonidentical multiple tooled (NIMT) manufacturing processes (like multiple cavity injection molding) using finite mixture distribution (FMD) models. A stepwise methodology is presented, including supporting mathematics and statistics. The methodology is illustrated and supported by its application to two sets of real multicavity injection molding data. The method is commercially relevant and is significant in that it allows enhanced examination of the fraction of the parts nonconforming or better setting of the specification level. Included are discussions of FMD models versus normal models and novel tail probability comparison methods (ratio of tail probabilities and log PDF comparisons). The methodology is recommended for NIMT processes, and is thought to better address the adequacy evaluation of processes where there are multiple nonidentical distributions mixing in production.

1.
Titterington
,
D. M.
,
Smith
,
A. F. M.
, and
Makov
,
U. E.
, 1985,
Statistical Analysis of Finite Mixture Distributions
,
Wiley
,
New York
, pp.
1
, 7, 23, 24, 39, 48–
50
, and Table 2.1.3.
2.
McLachlan
,
G.
, and
Peel
,
D.
, 2000,
Finite Mixture Models
,
Wiley
,
New York
, p.
37
.
3.
Faddoul
,
N. R.
,
English
,
J. R.
, and
Taylor
,
G. D.
, 1996, “
The Impact of Mixture Distributions in Classical Process Capability Analysis
,”
Inst. Ind. Eng. Trans.
,
28
, pp.
957
966
.
4.
Zhang
,
F.
, 2004, “
A Mixture Probabilistic PCA Model for Multivariate Processes Monitoring
,”
Institute of Electrical and Electronics Engineers (IEEE) Proceedings of the 2004 American Control Conference
, Vol.
4
, pp.
3111
3115
.
5.
Chen
,
H.
,
Chen
,
J.
, and
Kalbfleisch
,
J.
, 2004, “
Testing for a Finite Mixture Model With Two Components
,”
J. R. Stat. Soc. Ser. B. Methodol.
0035-9246,
66
, pp.
95
115
.
6.
James
,
L. F.
,
Priebe
,
C. E.
, and
Marchette
,
D. J.
, 2001, “
Consistent Estimation of Mixture Complexity
,”
Ann. Stat.
0090-5364,
29
, pp.
1281
1296
.
7.
Liu
,
Z.
,
Almhana
,
J.
,
Choulakian
,
V.
, and
McGorman
,
R.
, 2004, “
Recursive EM Algorithm for Finite Mixture Models With Application to Internet Traffic Modeling
,”
Institute of Electrical and Electronics Engineers (IEEE) Proceedings of the Second Annual Conference on Communication Networks and Services Research (CNSR’04)
, pp.
198
207
.
8.
Zhang
,
B.
,
Zhang
,
C.
, and
Yi
,
X.
, 2004, “
Competitive EM Algorithm for Finite Mixture Models
,”
Pattern Recogn.
0031-3203,
37
, pp.
131
144
.
9.
Arcidiacono
,
P.
, and
Jones
,
J. B.
, 2003, “
Finite Mixture Distributions Sequential Likelihood and the EM Algorithm
,”
Econometrica
0012-9682,
71
, pp.
933
946
.
10.
Zhang
,
L. J.
,
Lui
,
C. M.
, and
Davis
,
C. J.
, 2004, “
A Mixture Model-Based Approach to the Classification of Ecological Habitats Using Forest Inventory and Analysis Data
,”
Can. J. For. Res.
,
34
, pp.
1150
1156
.
11.
McLachlan
,
G. J.
, and
Chang
,
S. U.
, 2004, “
Mixture Modeling for Cluster Analysis
,”
Stat. Methods Med. Res.
0962-2802,
13
, pp.
347
361
.
12.
Liu
,
C. M.
,
Zhang
,
L. J.
,
Davis
,
C. J.
, and
Solomon
,
D. S.
, 2002, “
A Finite Mixture Model for Characterizing the Diameter Distributions of Mixed-Species Forest Stands
,”
For. Sci.
,
48
, pp.
653
661
.
13.
McLachlan
,
G. J.
,
Bean
,
R. W.
, and
Peel
,
D.
, 2002, “
A Mixture Model-Based Approach to the Clustering of Microarray Expression Data
,”
Bioinformatics
1367-4803,
18
, pp.
413
422
.
14.
Majeske
,
K. D.
, 2003, “
A Mixture Model for Automobile Warranty Data
,”
Reliab. Eng. Syst. Saf.
0951-8320,
81
, pp.
71
77
.
15.
Zhang
,
G.
, and
Tan
,
C. M.
, 2000, “
Reliability Data Analysis Software Development
,”
Proceedings of the International Society for Optical Engineering (SPIE)
, Vol.
4229
, pp.
107
115
.
16.
Simonoff
,
J. S.
, 1996,
Smoothing Methods in Statistics
,
Springer-Verlag
,
New York
, pp.
2
,
92
.
17.
Rice
,
J. A.
1995,
Mathematical Statistics and Data Analysis
,
2nd ed.
,
Duxbury Press
,
Belmont
, pp.
255
256
and 389.
18.
Matsushita
,
R.
,
Gleria
,
I.
,
Figueriredo
,
A.
, and
Da Silva
,
S.
, 2003, “
Fractal Structure in the Chinese Yuan/US Dollar Rate
,”
Econ. Bull.
,
7
(
2
), pp.
1
13
.
19.
Lillo
,
F.
, and
Mantegua
,
R. N.
, 2000, “
Variety and Volatility in Financial Markets
,”
Phys. Rev. E
1063-651X,
62
, pp.
6126
6134
.
20.
Baiesi
,
M.
,
Carlon
,
E.
, and
Stella
,
A.
, 2002, “
Scaling in DNA Unzipping Models: Denatured Loops and End Segments as Branches of a Block Copolymer Network
,”
Phys. Rev. E
1063-651X,
66
(
2
), p.
021804
.
21.
Barnes
,
J. W.
, 1994,
Statistical Analysis for Engineers and Scientists: A Computer-Based Approach
,
McGraw-Hill
,
New York
, p.
266
.
You do not currently have access to this content.