A hologram registration method is developed for the laser holographic interferometry measurement of the 3D surface profile of objects which are larger than the field of view (FOV). The theory of laser holographic interferometry, including the phase-shifting and multiwavelength tuning, is described. The hologram registration without using targets is elaborated. The cross-correlation analysis is used to find the translation and overlapped regions, which determine the tilt and shift correction for data registration. The proposed method is validated using two examples with different approaches. The first example, a wheel hub, is smaller than the FOV and demonstrates only 0.1μm discrepancy of the surface flatness between the registered and standard measurements. The second example, an engine combustion deck surface, is larger than the FOV. The registered surface measurements are compared to that of coordinate measurement machine (CMM) with only 2.5% discrepancy of the peak-to-valley flatness. This data registration method enables the sub-μm precision and large depth of field (several centimeters) measurement of large size objects.

1.
Leith
,
E. N.
, and
Upatneiks
,
J.
, 1962, “
Reconstructed Wavefronts and Communication Theory
,”
J. Opt. Soc. Am.
0030-3941,
52
, pp.
1123
1130
.
2.
Leith
,
E. N.
, and
Upatneiks
,
J.
, 1963, “
Wavefront Reconstruction With Continuous-Tone Objects
,”
J. Opt. Soc. Am.
0030-3941,
53
, pp.
1377
1381
.
3.
Leith
,
E. N.
, and
Upatneiks
,
J.
, 1964, “
Wavefront Reconstruction With Diffused Illumination and Three-Dimensional Objects
,”
J. Opt. Soc. Am.
0030-3941,
54
, pp.
1295
1301
.
4.
Powell
,
R. L.
, and
Stetson
,
K. A.
, 1965, “
Interferometric Vibration Analysis by Wavefront Reconstruction
,”
J. Opt. Soc. Am.
0030-3941,
55
, pp.
1593
1608
.
5.
Ginzburg
,
V. M.
, 1997, “
Industrial and Scientific Applications of Holographic Measurements
,”
Proc. SPIE
0277-786X,
2869
, pp.
908
917
.
6.
Hung
,
M.
, and
Chen
,
F.
, 2003, “
Optical Metrology Developments and Applications in the Transportation Industry
,”
Opt. Eng.
0091-3286,
42
(
5
), pp.
1186
1187
.
7.
Aleksoff
,
C.
, 2006 “
Multi-Wavelength Digital Holographic Metrology
,”
Proc. SPIE on Optical Information Systems IV
, 6311, Aug. 14, San Diego, CA.
8.
VanderLugt
,
A. B.
, 1964, “
Signal Detection by Complex Spatial Filtering
,”
IEEE Trans. Inf. Theory
0018-9448,
10
(
2
), pp.
139
145
.
9.
Kim
,
T.
, and
Poon
,
T. C.
, 2000, “
Three-Dimensional Matching by Use of Phase-Only Holographic Information and the Wigner Distribution
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis
1084-7529,
17
(
2
), pp.
2520
2528
.
10.
Kim
,
T.
,
Poon
,
T. C.
,
Wu
,
M. H.
,
Shinoda
,
K.
, and
Suzuki
,
Y.
, 1999, “
Three-Dimensional Image Matching Using Two-Dimensional Optical Heterodyne Scanning
,”
Opt. Mem. Neural Networks
1060-992X,
8
(
3
), pp.
139
145
.
11.
Dias
,
P.
,
Sequeira
,
V.
,
Goncalves
,
J. G. M.
, and
Vaz
,
F.
, 2002, “
Automatic Registration of Laser Reflectance and Colour Intensity Images for 3D Reconstruction
,”
Rob. Auton. Syst.
0921-8890,
39
, pp.
157
168
.
12.
Hsu
,
L. Y.
, and
Loew
,
M. H.
, 2000, “
Evaluation of the Accuracy of an Edge-Based Approach for Multimodality Brain Image Registration
,”
Proc. SPIE
0277-786X,
3979
, pp.
360
371
.
13.
Hsu
,
L. Y.
, and
Loew
,
M. H.
, 2001, “
Fully Automatic 3D Feature-Based Registration of Multi-Modality Medical Images
,”
Image Vis. Comput.
0262-8856,
19
(
1–2
), pp.
75
85
.
14.
Gasvik
,
K. J.
, 2002,
Optical Metrology
,
Wiley
,
Hoboken, NJ
.
15.
Kreis
,
T.
, 1998,
Holographic Interferometry: Principles and Methods
,
Akademie Verlag GmbH
,
Berlin
.
16.
Hariharan
,
P.
,
Oreb
,
B. F.
, and
Brown
,
N.
, 1982, “
A Digital Phase-Measurement System for Real-Time Holographic Interferometry
,”
Opt. Commun.
0030-4018,
41
(
6
), pp.
393
396
.
17.
Harvey
,
K. C.
, and
Myatt
,
C. J.
, 1991, “
External-Cavity Diode Laser Using a Grazing Incidence Diffraction Grating
,”
Opt. Lett.
0146-9592,
16
, pp.
910
912
.
18.
Maack
,
T.
,
Notni
,
G.
, and
Schreiber
,
W.
, 1995, “
Three Coordinate Measurement of an Object Surface With a Combined Two-Wavelength and Two Source Phase Shifting Speckle Interferometer
,”
Opt. Commun.
0030-4018,
115
(
5–6
), pp.
576
584
.
19.
Suematsu
,
M.
, and
Takeda
,
M.
, 1991, “
Wavelength-Shift Interferometry for Distance Measurements Using the Fourier Transform Technique for Fringe Analysis
,”
Appl. Opt.
0003-6935,
30
(
28
), pp.
4046
4055
.
20.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
, 2001,
Digital Image Processing
,
Prentice-Hall
.
21.
Shalom
,
T.
, 2003, “
System and Method for Aligning a Locally-Reconstructed Three-Dimensional Object to a Global Coordinate System Using Partially-Detected Control Points
,” U.S. Patent No. 6556705.
22.
Shalom
,
T.
,
Zelnik
,
I.
, and
Goldberger
,
J.
, 2001, “
System and Method for ‘Stitching’ a Plurality of Reconstructions of Three-Dimensional Surface Features of Object(S) in a Scene Defined Relative to Respective Coordinate Systems to Relate Them to a Common Coordinate System
,” U.S. Patent No. 6201541.
23.
Haralick
,
R. M.
, and
Shapiro
,
L. G.
, 1992,
Computer and Robot Vision
,
Addison-Wesley
, Vol.
II
.
24.
Whitehouse
,
D. J.
, 1994,
Handbook of Surface Metrology
,
Institute of Physics
.
You do not currently have access to this content.