In Part 1 of this paper, a continuum mechanics model of the orthogonal cutting process was developed based on finite deformation theory. In this part of the paper, constitutive equations for O1 and L6 tool steels are developed using the results from split Hopkinson pressure bar tests. Statistically designed orthogonal cutting experiments are conducted to secure process results across a range of cutting conditions. The continuum mechanics model established in Part 1 of this paper is used to simulate all the cutting tests. All the model outputs are calculated and compared with the corresponding cutting experiment results. Good agreement is observed between the model predictions and the experimental results. The continuum mechanics model is successfully used to predict the cutting force, shear angle, and temperature.

1.
Merchant
,
M. E.
, 1945, “
Mechanics of the Metal Cutting Process
,”
J. Appl. Phys.
0021-8979,
16
, pp.
267
318
.
2.
Alder
,
J. F.
, and
Phillips
,
V. A.
, 1995, “
The Effect of Strain Rate and Temperature on the Resistance of Aluminum, Copper, and Steel to Compression
,”
J. Inst. Met.
0020-2975,
83
, pp.
80
85
.
3.
Tanaka
,
K.
, and
Kinoshita
,
M.
, 1967, “
Strength of Steel at High Strain Rate and at High Temperature
,”
Bull. JSME
0021-3764,
10
(
39
), pp.
428
436
.
4.
Samanta
,
S. K.
, 1968, “
Resistance to Dynamic Compression Testing of Low Carbon Steel and Alloy Steel at Elevated Temperatures and High Strain-rates
,”
Int. J. Mech. Sci.
0020-7403,
10
, pp.
613
618
.
5.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
, 1983, “
Response of Various Metals to Large Torsional Strains Over a Large Range of Strain Rates—Part 1: Ductile Metals
,”
ASME J. Eng. Mater. Technol.
0094-4289,
105
, pp.
42
47
.
6.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
, 1983, “
Response of Various Metals to Large Torsional Strains Over a Large Range of Strain Rates—Part 2: Less Ductile Metals
,”
ASME J. Eng. Mater. Technol.
0094-4289,
105
, pp.
48
53
.
7.
Staskewitsch
,
E.
, and
Stiebler
,
K.
, 1992, “
Mechanical Behavior of a High-Strength Austenitic Steel Under Dynamic Biaxial Loading
,”
Shock-Wave and High-Strain-Rate Phenomena in Materials
,
M. A.
Meyers
et al.
, eds.,
Marcel Dekker
,
New York
, p.
107
.
8.
Stevenson
,
M. G.
, and
Oxley
,
P. L. B.
, 1970, “
An Experimental Investigation of the Influence of Strain-Rate and Temperature on the Flow Stress Properties of a Low Carbon Steel Using a Machining Test
,”
Proc. Inst. Mech. Eng.
0020-3483,
185
(
55
), pp.
741
754
.
9.
Stevenson
,
M. G.
, and
Oxley
,
P. L. B.
, 1973, “
High Temperature Stress/Strain Properties of a Low Carbon Steel from Hot Machining Tests
,”
Proc. Inst. Mech. Eng.
0020-3483,
187
, pp.
263
272
.
10.
Bao
,
H.
, and
Stevenson
,
M. G.
, 1976, “
An Investigation of Built-up Edge Formation in the Machining of Aluminum
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
16
, pp.
165
178
.
11.
Hastings
,
W. F.
,
Oxley
,
P. L. B.
, and
Stevenson
,
M. G.
, 1974, “
Predicting a Material’s Machining Characteristics Using Flow Stress Properties Obtained from High-Speed Compression Tests
,”
Proc. Inst. Mech. Eng.
0020-3483,
188
(
22
), pp.
245
252
.
12.
Stephenson
,
D. A.
, 1989, “
Material Characterization for Metal-Cutting Force Modeling
,”
ASME J. Eng. Mater. Technol.
0094-4289,
111
, pp.
210
219
.
13.
Kumar
,
S.
,
Fallbohmer
,
P.
, and
Altan
,
T.
, 1997, “
Computer Simulation of Orthogonal Metal Cutting Process: Determination of Material Properties and Effects of Tool Geometry on Chip Flow
,”
Proceedings of NAMRC 1997
, Lincoln, NE, May 20–23, SME Paper No. MR97–1.
14.
Litonski
,
J.
, 1997, “
Plastic Flow of a Tube under Adiabatic Torsion
,”
Bull. Acad. Pol. Sci. [Biol]
0001-5087,
25
, pp.
7
17
.
15.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proc. of the 7th Int. Symp. on Ballistics
,
The Hague
,
the Netherlands
, pp.
1
7
.
16.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
, 1988, “
Dislocation Mechanics Based Constitutive Relations for Materials Dynamics Modeling: Slip and Deformation Twinning in Iron
,”
Shock Waves in Condensed Matter
,
Elsevier
,
Amsterdam
, pp.
273
276
.
17.
Lee
,
W.
, and
Lin
,
C.
, 1998, “
High Temperature Deformation Behavior of Ti6A14V Alloy Evaluated by High Strain Rate Compression Tests
,”
J. Mater. Process. Technol.
0924-0136,
75
(
1
), pp.
127
136
.
18.
Jaspers
,
S. P. F. C.
,
Dautzenberg
,
J. H.
, and
Vellinga
,
W. P.
, 1998, “
Mechanical Behavior of Industrial Alloys at High Strain Rate and Temperature Using the Split Hopkinson Pressure Bar
,”
Proc. of the 6th ISMQC IMEKO Symp. Metrology for Quality Control in Production
,
P. H.
Osanna
,
D.
Prostrednik
, and
N. M.
Durakbasa
, eds., Tu Wein Abt. Austauschbau und Messtechnik, Wein, pp.
291
296
.
19.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
, 2002, “
Material Behavior in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
0924-0136,
122
, pp.
322
330
.
20.
Hopkinson
,
B.
, 1914, “
A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
213
, pp.
437
456
.
21.
Davies
,
R. M.
, 1948, “
A Critical Study of the Hopkinson Pressure Bar
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
240
, pp.
375
457
.
22.
Kolsky
,
H.
, 1949, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. R. Soc. London, Ser. B
0962-8452,
62
, pp.
676
700
.
23.
Meyers
,
M. A.
,
Murr
,
L. E.
, and
Staudhammer
,
K. P.
, ed., 1992,
Shock-Wave and High-Strain-Rate Phenomena in Materials
,
Marcel Dekker
,
New York
.
24.
Zheng
,
Y.
, and
Sutherland
,
J. W.
, 1999, “
An Orthogonal Cutting Model Based on Finite Deformation Analysis, Part II: Constitutive Equations and Experimental Verification
,”
ASME
,
MED–10
, pp.
301
309
.
25.
Tay
,
A. O.
,
Stevenson
,
M. G.
, and
de Vahl Davis
,
G.
, 1974, “
Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Cutting
,”
Proc. Inst. Mech. Eng.
0020-3483,
188
, pp.
627
638
.
26.
Tay
,
A. O.
,
Stevenson
,
M. G.
,
de Vahl Davis
,
G.
, and
Oxley
,
P. L. B.
, 1976, “
A Numerical Method for Calculating Temperature Distributions in Machining From Force and Shear Angle Measurements
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
16
, pp.
335
349
.
27.
Stevenson
,
M. G.
, and
Oxley
,
P. L. B.
, 1980, “
An Experimental Investigation of the Influence of Speed and Scale on the Strain-Rate in a Zone of Intense Plastic Deformation
,”
Proc. Inst. Mech. Eng.
0020-3483,
184
, pp.
561
569
.
You do not currently have access to this content.