An orthogonal cutting model is developed using the finite deformation theory of continuum mechanics. A family of flowlines is proposed to describe the chip flow during orthogonal cutting, and the shape of the flowlines is described in terms of three parameters, one of which is the shear angle. The velocity, Eulerian strain, and Eulerian strain rate distribution along the assumed flowlines are obtained analytically for the orthogonal cutting operation based on this model. The temperature distribution along the flowline is predicted via a finite difference method. Values for the three flowline parameters are selected that minimize the total power associated with primary shear zone deformation and chip-tool interaction using the Davidon-Fletcher-Powell optimization scheme. The model utilizes a general constitutive equation for material behavior, which is a function of strain, strain rate, and temperature. In Part I of this two-part paper, the continuum mechanics-based model for the orthogonal cutting process is established. Experimental assessment and adequacy checking of the model, including determination of the material constitutive equation using a split Hopkinson pressure bar technique, is presented in Part II of the paper.

1.
Ernst
,
H.
, and
Merchant
,
M. E.
, 1941, “
Chip Formation, Friction and High Quality Machined Surfaces
,”
Trans. Am. Soc. Met.
0096-7416,
29
, pp.
299
378
.
2.
Merchant
,
M. E.
, 1945, “
Mechanics of the Metal Cutting Process
,”
J. Appl. Phys.
0021-8979,
16
, pp.
267
318
.
3.
Lee
,
E. H.
, and
Shaffer
,
B. W.
, 1951, “
Theory of Plasticity Applied to the Problem of Machining
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
405
413
.
4.
Oxley
,
P. L. B.
, and
Hastings
,
W. F.
, 1977, “
Predicting the Strain Rate in the Zone of Intense Shear in which the Chip is Formed in Machining from the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
356
, pp.
395
410
.
5.
Kudo
,
H.
, 1965, “
Some New Slip-line Solutions for Two-dimensional Steady-State Machining
,”
Int. J. Mech. Sci.
0020-7403,
7
, pp.
43
45
.
6.
Dewhurst
,
P.
, 1978, “
On the Non-Uniqueness of the Machining Process
,”
Proc. R. Soc. London, Ser. A
1364-5021,
360
, pp.
587
610
.
7.
Fang
,
N.
,
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
, 2001, “
A Universal Slip-line Model with Non-Unique Solutions for Machining with Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
557
580
.
8.
Iwata
,
K.
,
Osakada
,
K.
, and
Terasaka
,
Y.
, 1984, “
Process Modeling of Orthogonal Cutting by the Rigid-Plastic Finite Element Method
,”
ASME J. Eng. Ind.
0022-0817,
106
, pp.
132
138
.
9.
Strenkowski
,
S.
, and
Carroll
,
J. T.
, 1985, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
0022-0817,
107
, pp.
349
354
.
10.
Lin
,
Z.-C.
, and
Pan
,
W.-C.
, 1993, “
A Thermoelastic-Plastic Large Deformation Model for Orthogonal Cutting with Tool Flank Wear—Part I: Computational Procedures;—Part II: Machining Application
,”
Int. J. Mech. Sci.
0020-7403,
35
, pp.
829
850
.
11.
Marusich
,
T. D.
, and
Ortiz
,
M.
, 1995, “
Modeling and Simulation of High-Speed Machining
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
(
21
), pp.
3675
3694
.
12.
Shih
,
A. J.
, 1995, “
Finite Element Simulation of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
0022-0817,
117
, pp.
84
93
.
13.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
,
Beaudoin
,
A. J.
, and
Bammann
,
D. J.
, 2003, “
Machining Simulation of Ductile Iron and Its Constituents, Part 1: Estimation of Material Model Parameters and Their Validation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
2
), pp.
181
395
.
14.
Sabberwal
,
A. J. P.
, 1961, “
Chip Section and Cutting Force during the Milling Operation
,”
CIRP Ann.
0007-8506,
10
, pp.
197
203
.
15.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Lindberg
,
J. R.
, 1982, “
The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
22
(
1
), pp.
7
22
.
16.
Fu
,
H. J.
, and
DeVor
,
R. E.
, 1984, “
Development of a Dynamic Force System Model for Face Milling
,”
Trans. of 12th North American Manufacturing Resources Conf.
, Houghton, MI, pp.
291
297
.
17.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
, 1986, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
ASME J. Eng. Ind.
0022-0817,
108
(
4
), pp.
269
279
.
18.
Sutherland
,
J. W.
, 1988, “
A Dynamic Model of the Cutting Force System in the End Milling Process
,”
Sensors and Controls for Manufacturing, ASME Bound Volume-PED
, Vol.
33
, pp.
53
62
.
19.
Subramani
,
G.
,
Suvada
,
R.
,
Kapoor
,
S. G.
,
Devor
,
R. E.
, and
Meingast
,
W.
, 1987, “
A Model for the Prediction of Force System for Cylinder Boring Process
,”
Proc. for XV North American Manufacturing Resources Conf.
, pp.
439
446
.
20.
Smith
,
S.
, and
Tlusty
,
J.
, 1988, “
Modeling and Simulation of the Milling Process
,”
Proc. Symp. on Sensors and Controls for Manufacturing
, Bethlehem, PA, May, ASME, New York,
PED–Vol. 33
, pp.
17
26
.
21.
Altintas
,
Y.
, 1992, “
Prediction of Cutting Forces and Tool Breakage in Milling from Feed Drive Current Monitoring
,”
ASME J. Eng. Ind.
0022-0817,
114
, pp.
386
392
.
22.
Bayoumi
,
A. E.
,
Yucesan
,
G.
, and
Kendall
,
L. A.
, 1994, “
An Analytic Mechanistic Cutting Force Model for Milling Operations: A Theory and Methodology
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
(
3
), pp.
324
330
.
23.
Spaans
,
C.
, 1971, “
Streamlines and the Stress, Strain, Strain Rate Distribution, and Stability in the Primary Shear Zone During the Cutting of Iron and Steel
,”
CIRP Ann.
0007-8506,
20
(
1
), pp.
19
20
.
24.
Spaans
,
C.
, 1972, “
A Treatise on the Streamline and Stress, Strain, and Strain Rate Distributions, and on Stability in the Primary Shear Zone in Metal Cutting
,”
ASME J. Eng. Ind.
0022-0817,
94
, pp.
690
696
.
25.
Tay
,
A. O.
,
Stevenson
,
M. G.
, and
de Vahl Davis
,
G.
, 1974, “
Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Cutting
,”
Proc. Inst. Mech. Eng.
0020-3483,
188
, pp.
627
638
.
26.
Tay
,
A. O.
,
Stevenson
,
M. G.
,
de Vahl Davis
,
G.
, and
Oxley
,
P. L. B.
, 1976, “
A Numerical Method for Calculating Temperature Distributions in Machining from Force and Shear Angle Measurements
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
16
, pp.
335
349
.
27.
Stevenson
,
M. G.
, and
Oxley
,
P. L. B.
, 1980, “
An Experimental Investigation of the Influence of Speed and Scale on the Strain-Rate in a Zone of Intense Plastic Deformation
,”
Proc. Inst. Mech. Eng.
0020-3483, Vol.
184
, pp.
561
569
.
28.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
29.
Zorev
,
N.
, 1966,
Metal Cutting Mechanics
,
Pergamon Press
,
Oxford
.
30.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
, 1959, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
0020-3483,
173
, pp.
622
654
.
31.
Madhavan
,
V.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
, 2002, “
Direct Observations of the Chip-Tool Interface in the Low Speed Cutting of Pure Metals
,”
ASME J. Tribol.
0742-4787,
124
, pp.
617
626
.
32.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
,
2nd ed.
,
McGraw-Hill
,
New York
.
33.
Rao
,
S. S.
, 1984,
Optimization: Theory and Applications
,
2nd ed.
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.