A model to predict tool failure due to chipping in machining via the microstructure-level finite element cutting process simulation is presented and applied to a wide variety of WC-Co tool materials. The methodology includes the creation of arbitrary microstructures comprised of WC and Co phases to simulate various grades of WC-Co alloys. Equivalent stress, strain, and strain energy are then obtained via orthogonal microstructure-level finite element machining simulations. A model was developed to predict the occurrence of tool failure based on the mixed mode fracture criterion. Turning experiments were conducted to validate the model and the results showed that the model predictions agree well with the observations from the experiments. The model was then employed to study the effects of microstructural parameters and feedrate on chipping and failure.

1.
Loladze
,
T. N.
, 1975, “
Nature of Brittle Failure of Cutting Tool
,”
CIRP Ann.
0007-8506,
24
(
1
), pp.
13
16
.
2.
Uehara
,
K.
, and
Kanda
,
Y.
, 1977, “
On the Chipping Phenomena of Carbide Cutting Tools
,”
CIRP Ann.
0007-8506,
25
(
1
), pp.
11
16
.
3.
Williams
,
W. S.
, 1964, “
Influence of Temperature, Strain Rate, Surface Condition, and Composition on the Plasticity of Transition-Metal Carbide Crystals
,”
J. Appl. Phys.
0021-8979,
35
(
4
), pp.
1329
1338
.
4.
Lee
,
I. C.
, and
Sakuma
,
T.
, 1997, “
High-Temperature Tensile Ductility in WC-Co Cemented Carbides
,”
Metall. Mater. Trans. A
1073-5623,
28A
, pp.
1843
1847
.
5.
Pandey
,
P. C.
,
Bhatia
,
S. M.
, and
Shan
,
H. S.
, 1979, “
Thermomechanical Failure of Cemented Carbide Tools in Intermittent Cutting
,”
CIRP Ann.
0007-8506,
28
(
1
), pp.
13
17
.
6.
Chandrasekaran
,
H.
, 1985, “
Thermal Fatigue Studies on Tool Carbides and Its Relevance of Milling Cutters
,”
CIRP Ann.
0007-8506,
34
(
1
), pp.
125
128
.
7.
Liu
,
B.
,
Zhang
,
Y.
, and
Ouyang
,
S.
, 2000, “
Study on the Relation between Structural Parameters and Fracture Strength of WC-Co Cemented Carbides
,”
Mater. Chem. Phys.
0254-0584,
62
, pp.
35
43
.
8.
Gurland
,
J.
, 1984, “
Application of Quantitative Microscopy to Cemented Carbides
,” ASTM STP, 839, ASTM Philadelphia, PA, pp.
65
84
.
9.
Tlusty
,
J.
, and
Masood
,
Z.
, 1978, “
Chipping and Breakage of Carbide Tools
,”
ASME J. Eng. Ind.
0022-0817,
100
, pp.
403
412
.
10.
Sampath
,
W. S.
,
Lee
,
Y. M.
, and
Shaw
,
M. C.
, 1984, “
Tool Fracture Probability under Steady State Cutting Conditions
,”
ASME J. Eng. Ind.
0022-0817,
106
, pp.
161
167
.
11.
Wu
,
H.
, and
Mayer
,
J. E.
, Jr.
, 1979, “
An Analysis of Thermal Cracking of Carbide Tools in Intermittent Cutting
,”
ASME J. Eng. Ind.
0022-0817,
101
, pp.
159
164
.
12.
Hirao
,
M.
,
Murata
,
R.
, and
Takeyama
,
H.
, 1977, “
Microscopic Stress Analysis of Sintered Carbide
,”
CIRP Ann.
0007-8506,
25
(
1
), pp.
27
31
.
13.
Fischmeister
,
H. F.
,
Schmauder
,
S.
, and
Sigl
,
L. S.
, 1988, “
Finite Element Modelling of Crack Propagation in WC-Co Hard Metals
,”
Mater. Sci. Eng., A
0921-5093,
105/106
, pp.
305
311
.
14.
Sigl
,
L. S.
, and
Fischmeister
,
H. F.
, 1988, “
On the Fracture Toughness of Cemented Carbides
,”
Acta Metall.
0001-6160,
36
(
4
), pp.
887
897
.
15.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Bammann
,
D. J.
, 2002, “
Microstructure-Level Modeling of Ductile Iron Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
162
169
.
16.
Park
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2004, “
Mechanistic Cutting Process Calibration Via Microstructure-Level Finite Element Simulation Model
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
706
709
.
17.
Betteridge
,
W.
, 1979, “
The Properties of Metallic Cobalt
,”
Prog. Mater. Sci.
0079-6425,
24
(
2
), pp.
51
142
.
18.
Engineering Properties of Selected Ceramic Materials
, 1966, American Ceramic Society,
J. F.
Lynch
,
C. G.
Ruderer
, and
W. H.
Duckworth
, eds.,
American Chemical Society
.
19.
Munro
,
R. G.
, 1997, “
Material Properties of a Sintered α-SiC
,”
J. Phys. Chem. Ref. Data
0047-2689,
26
(
5
), pp.
1195
1203
.
20.
Ng
,
E.
,
El-Wardany
,
T. I.
,
Cumitrescu
,
M.
, and
Elbestawi
,
M.
, 2002, “
Physics Based Simulation of High Speed Machining
,” in
Proceedings of the 5th CIRP International Workshop on Modeling of Machining Operations
, May 2002,
Purdue University
,
West Lafayette, IN
, pp.
1
19
.
21.
Özel
,
T.
, and
Altan
,
T.
, 1998, “
Modeling of High Speed Machining Processes for Predicting Tool Forces, Stresses and Temperatures Using FEM Simulations
,” in
Proceedings of the CIRP International Workshop on Modeling of Machining Operations
, May 19, 1998, Atlanta, GA, pp.
225
234
.
22.
Warren
,
R.
, 1978, “
Measurement of the Fracture Properties of Brittle Solids by Hertzian Indentation
,”
Acta Metall.
0001-6160,
26
, pp.
1756
1769
.
23.
Griffith
,
A. A.
, 1921, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
221
, pp.
163
198
.
24.
Dixon
,
G.
, and
Wright
,
N.
, 1989, “
Creep Deformation of WC-Co Alloys
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
8
, pp.
55
60
.
25.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1969, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
(
3
), pp.
201
217
.
26.
Marini
,
B.
,
Mudry
,
F.
, and
Pineau
,
A.
, 1985, “
Experimental Study of Cavity Growth in Ductile Rupture
,”
Eng. Fract. Mech.
0013-7944,
22
(
6
), pp.
989
996
.
27.
Santhanam
,
A. T.
, and
Tierney
,
P.
, 1989,
“Cemented Carbides,” Metals Handbook
,
9th ed.
,
ASM International
, Vol.
16
, pp.
71
89
.
28.
Warren
,
R.
, 1976, “
Determination of the Interfacial Energy Fatio in Two-Phase Systems by Measurement of Interphase Contact
,”
Metallography
0026-0800,
9
, pp.
183
191
.
29.
Chermant
,
J. L.
, and
Osterstock
,
F.
, 1976, “
Fracture Toughness and Fracture of WC-Co Composites
,”
J. Mater. Sci.
0022-2461,
11
,
1939
1951
.
30.
Suresh
,
S.
,
Shih
,
C. F.
,
Morrone
,
A.
, and
O’Dowd
,
N. P.
, 1990, “
Mixed-Mode Fracture Toughness of Ceramic Materials
,”
J. Am. Ceram. Soc.
0002-7820,
73
(
5
), pp.
1257
1267
.
31.
Eftis
,
J.
, and
Subramonia
,
N.
, 1978, “
The Inclined Crack under Biaxial Load
,”
Eng. Fract. Mech.
0013-7944,
10
, pp.
43
67
.
32.
Torres
,
Y.
,
Anglada
,
M.
, and
Llanes
,
L.
, 2001, “
Fatigue Mechanics of WC-Co Cemented Carbides
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
19
, pp.
341
348
.
33.
Exner
,
H. E.
,
Sigl
,
L.
,
Fripan
,
M.
, and
Pompe
,
O.
, 2001, “
Fractography of Critical and Subcritical Cracks in Hard Materials
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
19
, pp.
329
334
.
34.
Godse
,
R.
, and
Gurland
,
J.
, 1988, “
Applicability of the Critical Strain Fracture Criterion to WC-Co Hard Metals
,”
Mater. Sci. Eng., A
0921-5093,
105/106
, pp.
331
336
.
You do not currently have access to this content.