Optimal parameter selection is a crucial step in improving the quality of electronic packaging processes. Traditional approaches usually start with a set of physical experiments and then employ Design of Experiment (DOE) based response surface methodology (RSM) to find the parameter settings that will optimize a desired system response. Nowadays deterministic computer simulations such as Finite Element Analysis (FEA) are often used to replace physical experiments when evaluating a system response, e.g., the stress level in an electronic packaging. However, FEA simulations are usually computationally expensive due to their inherent complexity. In order to find the optimal parameters, it is not practical to use FEA simulations to calculate system responses over a large number of parameter combinations. Nor will it be effective to blindly use DOE-based response surface methodology to analyze the deterministic FEA outputs. In this paper, we will utilize a spatial statistical method (i.e., the Kriging model) for analyzing deterministic FEA outputs from an electronic packaging process. We suggest a sequential method when using the Kriging model to search for the optimal parameter values that minimize the stress level in the electronic packaging. Compared with the traditional RSM, our sequential parameter selection method entertains several advantages: it can remarkably reduce the total number of FEA simulations required for optimization, it makes the optimal solution insensitive to the choice of the initial simulation setting, and it can also depict the response surface and the associated uncertainty over the entire parameter space.

1.
Darveaux
,
R.
, 2000, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation
,”
Proceedings of the 50th IEEE Electronic Components and Technology Conference (ECTC’00)
,
Las Vegas, NV
.
2.
Shetty
,
S.
, and
Reinikainen
,
T.
, 2001, “
Three- and Four-Point Bend Testing for Electronic Packages
,”
Proceedings of the 2001 EuroSimE
,
Paris, France
, 9–11 April.
3.
Rodgers
,
B.
,
Punch
,
J.
,
Jarvis
,
J.
,
Myllykoski
,
P.
, and
Reinikainen
,
T.
, 2002, “
Finite Element Modeling of a BGA Package Subjected to Thermal and Power Cycling
,”
Inter Society Conference on Thermal Phenomena in Electronic Systems
,
San Diego, CA
, May 30–June 1.
4.
ANSYS, Inc.
, 2002,
ANSYS 6.1 Documentation
,
ANSYS, Inc.
, Canonsburg, PA.
5.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley and Sons
,
New York
.
6.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments (with discussion)
,”
Stat. Sci.
0883-4237,
4
, pp.
409
435
.
7.
Sacks
,
J.
,
Schiller
,
S. B.
, and
Welch
,
W. J.
, 1989, “
Design for Computer Experiments
,”
Technometrics
0040-1706,
31
, pp.
41
47
.
8.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
, 1992, “
Screening, Predicting and Computer Experiments
,”
Technometrics
0040-1706,
34
, pp.
15
25
.
9.
Ripley
,
B. D.
, 1981,
Spatial Statistics
,
John Wiley and Sons
,
New York
.
10.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
Design and Analysis of Computer Experiments, Springer Series in Statistics
,
Springer Verlag
,
Berlin
.
11.
Lindstrom
,
M. J.
, and
Bates
,
D. M.
, 1988, “
Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data
,”
J. Am. Stat. Assoc.
0162-1459,
83
, pp.
1014
1022
.
12.
Nelder
,
J. A.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
7
, pp.
308
313
.
13.
Bernardo
,
M. C.
,
Buck
,
R.
,
Liu
,
L.
,
Nazaret
,
W. A.
,
Sacks
,
J.
, and
Welch
,
W. J.
, 1992, “
Integrated Circuit Design Optimization Using a Sequential Strategy
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
11
, pp.
361
372
.
14.
Chang
,
P. B.
,
Williams
,
B. J.
,
Bhalla
,
K. S. B.
,
Belknap
,
T. W.
,
Santner
,
T. J.
,
Notz
,
W. I.
, and
Bartel
,
D. L.
, 2001, “
Design and Analysis of Robust Total Joint Replacements: Finite Element Model Experiments with Environmental Variables
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
239
246
.
15.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables In the Analysis of Output From a Computer Code
,”
Technometrics
0040-1706,
21
, pp.
239
245
.
16.
Montgomery
,
D. C.
, 1997,
Design and Analysis of Experiments
,
4th ed.
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.