Background: Form-error measurement is mandatory for the quality assurance of manufactured parts and plays a critical role in precision engineering. There is now a significant literature on analytical methods of form-error measurement, which either use mathematical properties of the relevant objective function or develop a surrogate for the objective function that is more suitable in optimization. On the other hand, computational or numerical methods, which only require the numeric values of the objective function, are less studied in the literature on form-error metrology. Method of Approach: In this paper, we develop a methodology based on the theory of finite-differences derivative descent, which is of a computational nature, for measuring form error in a wide spectrum of features, including straightness, flatness, circularity, sphericity, and cylindricity. For measuring form-error in cylindricity, we also develop a mathematical model that can be used suitably in any computational technique. A goal of this research is to critically evaluate the performance of two computational methods, namely finite-differences and Nelder-Mead, in form-error metrology. Results: Empirically, we find encouraging evidence with the finite-differences approach. Many of the data sets used in experimentation are from the literature. We show that the finite-differences approach outperforms the Nelder-Mead technique in sphericity and cylindricity. Conclusions: Our encouraging empirical evidence with computational methods (like finite differences) indicates that these methods may require closer research attention in the future as the need for more accurate methods increases. A general conclusion from our work is that when analytical methods are unavailable, computational techniques form an efficient route for solving these problems.

1.
Montgomery
,
D.
, 2001,
Introduction to Statistical Quality Control
,
4th ed.
Wiley
, New York.
2.
Griffith
,
G. K.
, 2002,
Geometric Dimensioning and Tolerancing
,
2nd ed.
Prentice-Hall
, Englewood Cliffs, NJ.
3.
ISO
, 1983,
Technical Drawings: Tolerancing of Form, Orientation, Location, and Runout—Generalities, Definitions, Symbols, Indications on Drawing
, Report number ISO: 1101-983(E).
4.
ANSI
, 1995,
Dimensioning and Tolerancing, ANSI Y 14.5
,
ASME
, New York.
5.
ANSI
, 1995,
Mathematical Definitions of Dimensioning and Tolerancing Principles, ANSI Y 14.5
,
ASME
, New York.
6.
Badar
,
M. A.
,
Raman
,
S.
, and
Pulat
,
P. S.
, 2003, “
Intelligent Search-Based Selection of Sample Points for Straightness and Flatness Estimation
,”
J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
263
271
.
7.
Dowling
,
M.
,
Griffin
,
P.
,
Tsui
,
K.
, and
Zhou
,
C.
, 1997, “
Statistical Issues in Geometric Feature Inspection Using Coordinate Measuring Machines
,”
Technometrics
0040-1706,
39
(
1
), pp.
3
17
.
8.
Namboothiri
,
V.
and
Shunmugam
,
M.
, 1999, “
On Determination of Sample Size in Form Error Evaluation Using Coordinate Metrology
,”
Int. J. Prod. Res.
0020-7543,
37
, pp.
793
804
.
9.
Traband
,
M.
,
Mederios
,
D.
, and
Chandra
,
M.
, 2004, “
A Statistical Approach to Tolerance Evaluation for Circles and Cylinders
,”
IIE Trans.
0740-817X,
36
(
8
), pp.
777
785
.
10.
Kim
,
W.
and
Raman
,
S.
, 2000, “
On Selection of Flatness Measurement Points Using Coordinate Measuring Machines
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
427
443
.
11.
Kurfess
,
T.
and
Banks
,
D.
, 1995, “
Statistical Verification of Conformance to Geometric Tolerance
,”
Comput.-Aided Des.
0010-4485,
27
(
5
), pp.
353
361
.
12.
Whitehouse
,
D.
, 2002,
Surfaces and their Measurement
,
Taylor and Francis
, New York.
13.
Marshall
,
D.
,
Lukas
,
G.
, and
Martin
,
R.
, 2001, “
Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
23
(
3
), pp.
304
314
.
14.
Shunmugam
,
M.
, 1986, “
On Assessment of Geometric Errors
,”
Int. J. Prod. Res.
0020-7543,
24
, pp.
413
425
.
15.
Hooke
,
R.
and
Jeeves
,
T.
, 1961, “
Direct Search Solution of Numerical and Statistical Problems
,”
J. ACM
1535-9921,
8
, pp.
212
229
.
16.
Nelder
,
J. A.
and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
7
, pp.
308
313
.
17.
Murthy
,
T.
and
Abdin
,
S.
, 1980, “
Minimum Zone Evaluation of Surfaces
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
20
, pp.
123
136
.
18.
Kanada
,
T.
and
Suzuki
,
S.
, 1993, “
Evaluation of Minimum Zone Flatness by Means of Non-Linear Optimization Techniques
,”
Precis. Eng.
0141-6359,
15
, pp.
274
280
.
19.
Kanada
,
T.
, 1995, “
Evaluation of Spherical Form Errors—Computation of Sphericity by Means of Minimum Zone Method and Some Examinations With Using Simulated Data
,”
Precis. Eng.
0141-6359,
17
, pp.
281
289
.
20.
Damodarasamy
,
S.
and
Anand
,
S.
, 1999, “
Evaluation of Minimum Zone for Flatness by Normal Plane Method and Simplex Search
,”
IIE Trans.
0740-817X,
31
, pp.
617
626
.
21.
Elmaraghy
,
W.
,
Elmaraghy
,
H.
, and
Wu
,
Z.
, 1990, “
Determination of Actual Geometric Deviations Using Coordinate Measuring Machine Data
,”
Manuf. Rev.
0896-1611,
3
(
1
), pp.
32
39
.
22.
Lai
,
H.
,
Jywe
,
W.
,
Chen
,
C.
, and
Liu
,
C.
, 2000, “
Precision Modeling of Form Errors for Cylindricity Evaluation Using Genetic Algorithms
,”
Precis. Eng.
0141-6359,
24
, pp.
310
319
.
23.
Pham
,
D. T.
and
Karaboga
,
D.
, 1998,
Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks
,
Springer-Verlag
, New York.
24.
Nocedal
,
J.
and
Wright
,
S.
, 1999,
Numerical Optimization
,
Springer
, New York.
25.
Cauchy
,
A.
, 1847, “
Méthode Générale Pour La Résolution Des Systéms D équations Simultanées
,”
Comp. Rend. Acad. Sci. Paris
, pp.
536
538
.
26.
Cardou
,
A.
,
Boullion
,
G.
, and
Tremblay
,
G.
, 1972, “
Some Considerations on the Flatness of Surface Plates
,”
Microtecnic
0026-2854,
26
(
7
), pp.
367
368
.
27.
Boudjemaa
,
R.
,
Cox
,
M.
,
Forbes
,
A.
, and
Harris
,
P.
, 2003, “
Automatic Differentiation Techniques and Their Application in Metrology
,” Technical Report CMSC 26/03, National Physical Laboratory, UK.
28.
Zhu
,
L.
,
Ding
,
H.
, and
Xiong
,
Y.
, 2003, “
A Steepest Descent Algorithm for Circularity Evaluation
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
255
265
.
29.
Dhanish
,
P.
and
Shunmugam
,
M.
, 1991, “
An Algorithm for Form ErrorEvaluation—Using the Theory of Discrete and Linear Chebyshev Approximation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
92
, pp.
309
324
.
30.
Weber
,
T.
,
Motavalli
,
S.
,
Fallahi
,
B.
, and
Cheraghi
,
S. H.
, 2002, “
A Unified Approach to Form Error Evaluation
,”
Precis. Eng.
0141-6359,
26
, pp.
269
278
.
31.
Rajagopal
,
K.
and
Anand
,
S.
, 1999, “
Assessment of Circularity Error Using a Selective Data Partition Approach
,”
Int. J. Prod. Res.
0020-7543,
37
, pp.
3959
3979
.
32.
Wang
,
M.
,
Cheraghi
,
S. H.
, and
Masud
,
A. S. M.
, 2001, “
Sphericity Error Evaluation: Theoretical Derivation and Algorithm Development
,”
IIE Trans.
0740-817X,
33
, pp.
281
292
.
33.
Cheraghi
,
S. H.
,
Jiang
,
G.
, and
Ahmad
,
J. S.
, 2003, “
Evaluating the Geometric Characteristics of Cylindrical Features
,”
Precis. Eng.
0141-6359,
27
, pp.
195
204
.
34.
Phatakwala
,
S.
, 2005, “
Estimation of Form Error and Determination of Sample Size in Precision Metrology
,” M.S. thesis, work-in-progress in Department of Industrial Engineering at the University at Buffalo, State University of New York.
35.
Bertsekas
,
D.
, 1999,
Non-linear Programming
,
2nd ed.
,
Athena Scientific, Belmont
, MA.
36.
Spall
,
J.
, 1992, “
Multivariate Stochastic Approximation using a Simultaneous Perturbation Gradient Approximation
,”
IEEE Trans. Autom. Control
0018-9286,
37
, pp.
332
341
.
You do not currently have access to this content.