This paper presents digital panel assembly (DPA) methodologies and applications for sheet component assembly in automotive body manufacturing processes. Core to DPA is the customized finite element analysis formulas we have developed, which simulates assembly processes and predicts assembly dimensions by taking into consideration the panel compliances. Two key analysis types of the DPA are presented, the deterministic analysis and variation analysis. We present a methodology to utilize the quadratic form of Taylor series expansion to approximate the assembly dimensions efficiently in variation simulation, and discuss its pros and cons versus the traditional Monte Carlo method under different modeling conditions. For either the deterministic or variation analysis, linear models (without contact, efficient but less accurate), and nonlinear models (with contact, less efficient but accurate) can be established. It is shown that the linear models are only valid when panels do not penetrate, and that the nonlinear models should generally be used for accurate assembly dimension prediction. Based on the DPA methodologies, a software tool called Elastic Assembly Variation Simulation (EAVS) is presented, followed by application case studies. The confidence intervals for variation analysis are also discussed.

1.
Hsieh
,
C. C.
, and
Oh
,
K. P.
, 1997, “
Simulation and Optimization of Assembly Processes Involving Flexible Parts
,”
Int. J. Veh. Des.
0143-3369,
18
(
5
), pp.
455
465
.
2.
Hsieh
,
C. C.
, and
Oh
,
K. P.
, 1997, “
A Framework for Modeling Variation in Vehicle Assembly Processes
,”
Int. J. Veh. Des.
0143-3369,
18
(
5
), pp.
466
473
.
3.
Cao
,
T.
,
Rastogi
,
C.
, and
Hsieh
,
C. C.
, 2001, “
Application of Variation Simulation in Body Assembly Process Design
,” SAE paper no. 2001-01-3064.
4.
Xie
,
S.
and
Hsieh
,
C. C.
, 2002, “
Clamping and Welding Sequence Optimization for Minimizing Cycle Time and Assembly Deformation
,”
Int. J. Mater. Prod. Technol.
0268-1900,
17
(
5/6
), pp.
389
399
.
5.
Hsieh
,
C. C.
, and
Liang
,
F.
, 2002, “
Methods For Flexible Part Clamping Simulation And Optimization
,”
ASME International Mechanical Engineering Congress and Exposition
, New Orleans, LA.
6.
Cai
,
W.
,
Lesperance
,
R. M.
,
Marin
,
S. P.
,
Meyer
,
W. W.
, and
Oetjens
,
T. J.
, 2002, “
Digital Panel Assembly for Automotive Body-in-White
,”
ASME International Mechanical Engineering Congress and Exposition
, New Orleans, LA.
7.
Liu
,
S. C.
,
Hu
,
S. J.
and
Woo
,
T. C.
, 1996, “
Tolerance Analysis for Sheet Metal Assemblies
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
62
67
.
8.
Liu
,
S. C.
, and
Hu
,
S. J.
, 1997, “
Variation Simulation for Deformable Sheet Metal Assembly Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
3
), pp.
368
374
.
9.
Hu
,
S. J.
, 1997, “
Stream of Variation Theory for Automotive Body Assembly
,”
CIRP Ann.
0007-8506
46/1
, pp.
1
6
.
10.
Shiu
,
B. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 1996, “
Multi-stations Sheet Metal Assembly Modeling and Diagnostics
,”
Trans. NAMRI
,
XXIV
, pp.
199
204
.
11.
Shiu
,
B. W.
,
Apley
,
D.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2003, “
Tolerance Allocation for Sheet Metal Assembly using Beam-Based Model
,” of
IIE Trans.
0740-817X,
35
(
4
), pp.
329
342
.
12.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multistation Assembly Systems with Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
673
681
.
13.
Long
,
Y.
, 1998,
CAVA Manual
,
The University of Michigan
, Ann Arbor, MI.
14.
Greenwood
,
W. H.
, and
Chase
,
K. W.
, 1988, “
Worst Case Tolerance Analysis with Non-linear Problems
,”
ASME J. Eng. Ind.
0022-0817,
110
(
3
), pp.
232
235
.
15.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
, 1995, “
Comparison of Assembly Tolerance Analysis by the Direct Linearization and Modified Monte Carlo Simulation Methods
,”
Proceedings of the ASME Design Engineering Technical Conference
, Boston, MA,
ASME
,
New York
, pp.
353
360
.
16.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
, 1998, “
General 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments
,”
IIE Trans.
0740-817X,
30
, pp.
367
377
.
17.
Merkley
,
K. G.
,
Chase
,
K. W.
, and
Perry
,
E.
, 1996, “
An Introduction to Tolerance Analysis of Flexible Systems
,”
MSC World Users’ Conference
, MSC Software Corp., Newport Beach, CA.
18.
Merkley
,
K. G.
, 1998, “
Tolerance Analysis of Compliant Assemblies
,” Ph.D. dissertation, Brigham Young University, Provo, UT.
19.
Stout
,
J. B.
, 2000, “
Geometric Covariance in Compliant Assembly Tolerance Analysis
,” M.S. thesis, Brigham Young University, Provo, UT.
20.
Chang
,
M.
, and
Gossard
,
D.
, 1997, “
Modeling the Assembly of Compliant, Non-ideal Parts
,”
Comput.-Aided Des.
0010-4485,
29
(
10
), pp.
701
708
.
21.
Hochmuth
,
R.
,
Meerkamm
,
H.
, and
Schweiger
,
W.
, 1998, “
An Approach to a General View on Tolerances in Mechanical Engineering
,”
The 2nd International Workshop on Integrated Product Development IPD 98
, Magdeburg, Germany, pp.
65
76
.
22.
Mattikalli
,
R.
,
Mahanian
,
S.
,
Jones
,
A.
, and
Clark
,
G.
, 2000, “
Modeling Compliant Part Assembly: Mechanics of Deformation and Contact
,” ASME Paper No. DETC2000/MECH-14036.
23.
Dahlström
,
S.
, and
Camelio
,
J. A.
, 2003, “
Fixture Design Methodology for Sheet Metal Assembly Using Computer Simulations
,”
ASME International Mechanical Engineering Congress and Expositions
, Washington, D.C.
24.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1996, “
Deformable Sheet Metal Fixturing: Principles, Algorithms and Simulations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
(
3
), pp.
318
324
.
25.
Cai
,
W.
, 2005, “
Robust Pin Layout Design For Sheet Metal Locating
,”
Int. J. Adv. Manuf. Technol.
0268-3768, to be published.
26.
Cai
,
W.
,
Wang
,
P. C.
, and
Yang
,
W.
, 2005, “
Assembly Dimensional Prediction for Self-Piercing Riveted Aluminum Panels
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45/6
, pp.
695
704
.
27.
Hallquist
,
J. O.
, 1998,
LS-DYNA Theoretical Manual
,
Livermore Software Technology Corporation
, Livermore, CA.
28.
Abaqus Theory Manual 5.1: Contact Modeling
, Ver. 6.3.1, 2002,
Abaqus Inc.
, Providence, RI.
29.
Hines
,
W. W.
, and
Montgomery
,
D. C.
, 1980,
Probability and Statistics in Engineering and Management Science
, 2nd ed.,
Wiley
, New York.
30.
Beyer
,
W. H.
, 1982,
CRC Handbook of Tables for Probability and Statistics
, 2nd ed.,
CRC Press
, Boca Raton, FL.
31.
Karian
,
Z. A.
, and
Dudewicz
,
E. J.
, 1998,
Modern Statistica, Systems and GPSS Simulation
, 2nd ed.,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.