This paper presents a novel methodology for evaluating spatial straightness error based on the minimum zone criterion. Spatial straightness evaluation is formulated as a linear complex Chebyshev approximation problem, and then reformulated as a semi-infinite linear programming problem. Both models for the primal and dual programs are developed. An efficient simplex-based algorithm is employed to solve the dual linear program to yield the straightness value. Also a general algebraic criterion for checking the optimality of the solution is proposed. Numerical experiments are given to verify the effectiveness and efficiency of the presented algorithm.

1.
Zhang
,
Q.
,
Fan
,
K. C.
, and
Li
,
Z.
, 1999, “
Evaluation Method for Spatial Straightness Errors Based on Minimum Zone Condition
,”
Precis. Eng.
0141-6359,
23
, pp.
264
272
.
2.
Liu
,
J.
, and
Wang
,
X. M.
, 1996,
Saddle Point Programming and Geometric Error Evaluation
,
Dalian University of Technology Press
.
3.
Dhanish
,
P. B.
, and
Shunmugam
,
M. S.
, 1991, “
An Algorithm for Form Error Evaluation-Using the Theory of Discrete and Linear Chebyshev Approximation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
92
, pp.
309
324
.
4.
Xiong
,
Y. L.
, 1991, “
Computer Aided Measurement of Profile Error of Complex Surfaces and Curves: Theory and Algorithm
,”
Int. J. Mach. Tools Manuf.
0890-6955,
30
, pp.
339
357
.
5.
Huang
,
S. T.
,
Fan
,
K. C.
, and
John
,
H. W.
, 1993, “
A New Minimum Zone Method for Evaluating Straightness Errors
,”
Precis. Eng.
0141-6359,
15
, pp.
158
165
.
6.
Chen
,
C. K.
, and
Wu
,
S. C.
, 1999, “
A Method for Measuring and Separating Cylindrical and Spindle Errors in Machine Tool Rotational Parts
,”
Meas. Sci. Technol.
0957-0233,
10
, pp.
76
83
.
7.
Wen
,
X. L.
, and
Song
,
A. G.
, 2003, “
An Improved Genetic Algorithm for Planar and Spatial Straightness Error Evaluation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
11
), pp.
1157
1162
.
8.
Agarwal
,
P. K.
,
Aronov
,
B.
, and
Sharir
,
M.
, 1999, “
Line Transversals of Balls and Smallest Enclosing Cylinders in Three Dimensions
,”
Discrete Comput. Geom.
0179-5376,
21
, pp.
373
388
.
9.
Huang
,
J. P.
, 1999, “
An Exact Minimum Zone Solution for Three-Dimensional Straightness Evaluation Problems
,”
Precis. Eng.
0141-6359,
23
, pp.
204
208
.
10.
Carr
,
K.
, and
Ferreira
,
P.
, 1995, “
Verification of Form Tolerances, Part II: Cylindricity and Straightness of a Median Line
,”
Precis. Eng.
0141-6359,
17
, pp.
144
156
.
11.
Zhu
,
X. Y.
,
Ding
,
H.
, and
Wang
,
M. Y.
, 2004, “
Form Error Evaluation: An Iterative Reweighted Least Squares Algorithm
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
535
541
.
12.
Ellacott
,
S.
, and
Williams
,
J.
, 1976, “
Linear Chebyshev Approximation in the Complex Plane Using Lawson’s Algorithm
,”
Math. Comput.
0025-5718,
30
, pp.
35
44
.
13.
Burnside
,
D.
, and
Parks
,
T. W.
, 1995, “
Optimal Design of FIR Filters with the Complex Chebyshev Error Criteria
,”
IEEE Trans. Signal Process.
1053-587X,
43
(
3
), pp.
605
616
.
14.
Zhu
,
L. M.
,
Ding
,
H.
, and
Xiong
,
Y. L.
, 2003, “
Distance Function Based Algorithm for Spatial Straightness Evaluation
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
, pp.
931
939
.
15.
Zhu
,
L. M.
,
Xiong
,
Z. H.
,
Ding
,
H.
, and
Xiong
,
Y. L.
, 2004, “
A Distance Function Based Approach for Localization and Profile Error Evaluation of Complex Surface
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
542
554
.
16.
Streit
,
R. L.
, and
Nuttall
,
A. H.
, 1982, “
A General Chebyshev Complex Function Approximation Procedure and an Application to Beam Forming
,”
J. Acoust. Soc. Am.
0001-4966,
71
(
1
), pp.
181
190
.
17.
Tang
,
P. T.P.
, 1988, “
A Fast Algorithm for Linear Complex Chebyshev Approximations
,”
Math. Comput.
0025-5718,
51
(
3
), pp.
721
739
.
18.
Glashoff
,
K.
, and
Roleff
,
K.
, 1981, “
A New Method for Chebyshev Approximation of Complex-Valued Function
,”
Math. Comput.
0025-5718,
36
, pp.
233
239
.
19.
Anderson
,
E. J.
, and
Nash
,
P.
, 1987,
Linear Programming in Infinite-Dimensional Spaces
,
Wiley
, New York.
20.
Zhu
,
X. Y.
,
Ding
,
H.
, and
Tso
,
S. K.
, 2004, “
A Pseudodistance Function and its Applications
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
344
352
.
This content is only available via PDF.
You do not currently have access to this content.