We present a novel online inspection method for manufacturing processes that automatically adapts to variations in part and environmental properties. This method is based on a developmental learning architecture comprising a procedure that focuses attention to apparently defective regions, a recognition method that performs automatic feature derivation based on a set of training images and hierarchical classification, and an action step that controls attention and further decision processes. The method adapts to variations incrementally by updating rather than recreating the training information. Also, the method is capable of inspecting and training simultaneously. Addressing new inspection tasks requires neither re-programming and compatibility tests, nor quantitative knowledge about the image set, from a human developer. Instead, automatic or manual training of the inspection system according to simple guidelines is applied. These attributes allow the method to improve online performance with minimal ramp-up time. Our system performed inspection of three applications with low error rate and fast recognition, confirming its suitability for general-purpose, real-time, online inspection.

1.
Al-kindi
,
G. A.
,
Baul
,
R. M.
, and
Gill
,
K. F.
, 1992, “
An Application of Machine Vision in the Automated Inspection of Engineering Surfaces
,”
Int. J. Prod. Res.
0020-7543,
30
, pp.
241
253
.
2.
Rao
,
A. R.
, and
Jain
,
R.
, 1990, “
A Classification Scheme for Visual Defects Arising in Semiconductor Wafer Inspection
,”
J. Cryst. Growth
0022-0248,
103
, pp.
398
406
.
3.
Lampinen
J.
, and
Smolander
S.
, 1994, “
Wood Defect Recognition with Self-Organizing Feature Selection
,”
Proc. SPIE Conf. on Intelligent Robots and Computer Vision XIII: Algorithms and Computer Vision
,
D. P.
Casasent
, and
E. L.
Hall
, eds., Vol.
2353
, pp.
385
395
.
4.
Niskanen
M.
,
Silvén
O.
, and
Kauppinen
,
H.
, 2001, “
Experiments with SOM Based Inspection of Wood
,”
Proc. Intl. Conf. on Quality Control by Artificial Vision
, Vol.
2
, pp.
311
316
.
5.
Silva
,
J. A.
,
Pais
,
C. P.
,
Freitas
,
J. C.
,
Carvalho
,
F. D.
, and
Rodrigues
,
F. C.
, 1992, “
Detection and Automatic Classification of Defects in Ceramic Products
,”
Proc. SPIE Intl. Conf. on Manufacturing Automation
,
W.
Zhiling
et al.
, eds.,
1713
, pp.
22
28
.
6.
Sari-Sarraf
,
H.
, and
Goddard
,
J. S.
, Jr.
, 1999, “
Vision System for On-Loom Fabric Inspection
,”
IEEE Trans. Ind. Appl.
0093-9994,
35
, pp.
1252
1259
.
7.
Koren
,
Y.
,
Heisel
,
U.
,
Jovane
,
F.
,
Moriwaki
,
T.
,
Pritschow
,
G.
,
Van Brussel
,
H.
, and
Ulsoy
,
A. G.
, 1999, “
Reconfigurable Manufacturing Systems
,”
CIRP Ann.
0007-8506,
48
, pp.
6
12
.
8.
Nazir
,
T.
, and
O’Regan
,
J. K.
, 1990, “
Some Results on Translation Invariance in the Human Visual System
,”
Spatial Vis.
0169-1015,
5
, pp.
81
100
.
9.
Kolers
,
P. A.
,
Duchnicky
,
R. L.
, and
Sundstroem
,
G.
, 1985, “
Size in Visual Processing of Faces and Words
,”
J. Exp. Psychol. Hum. Percept. Perform.
0096-1523,
11
, pp.
726
751
.
10.
Thompson
,
P.
, 1980, “
Margaret Thatcher: A New Illusion
,”
Perception
0301-0066,
9
, pp.
483
484
.
11.
Harris
,
C.
, and
Stephens
,
M.
, 1988, “
A Combined Corner and Edge Detector
,”
Proc. of the Fourth Alvey Vision Conference
, pp.
147
151
.
12.
Hough
,
P. V. C.
, 1992, “
Method and Means of Recognizing Complex Patterns
,” US Patent 3,069,654.
13.
Long
,
H.
,
Tan
,
C. W.
, and
Leow
,
W. K.
, 2001, “
Invariant and Perceptually Consistent Texture Mapping for Content-Based Image Retrieval
,”
Proc. 2001 Int. Conf. on Image Processing
,
2
, pp.
117
120
.
14.
Teuner
,
A.
,
Pichler
,
O.
,
Sandos
Conde J. E.
,
, and
Hosticka
,
B. J.
, 1997, “
Orientation- and Scale-Invariant Recognition of Textures in Multi-Object Scenes
,”
Proc. 1997 Int. Conf. on Image Processing
,
3
, pp.
174
177
.
15.
Picard
,
R. W.
, and
Kabir
,
T.
, 1993, “
Finding Similar Patterns in Large Image Databases
,”
1993 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
,
5
, pp.
161
164
.
16.
Reddy
,
B. S.
, and
Chatterji
,
B. N.
, 1996, “
An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration
,”
IEEE Trans. Image Process.
1057-7149,
5
, pp.
1266
1271
.
17.
Charalampidis
,
D.
, and
Kasparis
,
T.
, 2002, “
Rotation Invariant Roughness Features for Texture Classification
,”
2002 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
,
4
, pp.
3672
3675
.
18.
Greenspan
,
H.
,
Belongie
,
S.
,
Goodman
,
R.
,
Perona
,
P.
,
Rakshit
,
S.
, and
Anderson
,
C. H.
, 1994, “
Overcomplete Steerable Pyramid Filters and Rotation Invariance
,”
Proc. 1994 Computer Vision and Pattern Recognition
, pp.
222
228
.
19.
Götze
,
N.
,
Drüe
,
S.
, and
Hartmann
,
G.
, 2000, “
Invariant Object Recognition with Discriminant Features Based on Local Fast-Fourier Mellin Transform
,”
Proc. 15th Int. Conf. on Pattern Recognition
,
1
, pp.
948
951
.
20.
Neubauer
,
C.
, 1991, “
Fast Detection and Classification of Defects on Treated Metal Surfaces Using a Backpropagation Neural Network
,”
IEEE Int. Joint Conf. Neural Networks
,
2
, pp.
1148
1153
.
21.
Caleb
,
P.
, and
Steuer
,
M.
, 2000, “
Classification of Surface Defects on Hot Rolled Steel Using Adaptive Learning Methods
,”
Proc. IEEE Fourth Int. Conf. on Knowledge-Based Intelligent Engineering Systems & Allied Technologies
,
1
, pp.
103
108
.
22.
Wu
,
X.
,
Wang
,
J.
,
Flitman
,
A.
, and
Thomson
,
P.
, 1999, “
Neural and Machine Learning to the Surface Defect Investigation in Sheet Metal Forming
,”
Proc. of the Neural Information Processing
,
3
, pp.
1088
1093
.
23.
Sinha
,
S. K.
,
Karray
,
F.
, and
Fieguth
,
P. W.
, 1999, “
Underground Pipe Cracks Classification Using Image Analysis and Neuro-Fuzzy Algorithm
,”
Proc. of IEEE Int. Symp. on Intelligent Control/ Intelligent Systems and Semiotics
, pp.
399
404
.
24.
Weng
,
J.
,
Ahuja
,
N.
, and
Huang
,
T. S.
, 1997, “
Learning Recognition and Segmentation Using the Creseptron
,”
Int. J. Comput. Vis.
0920-5691,
25
, pp.
109
143
.
25.
Kirby
,
M.
, and
Sirovich
,
L.
, 1990, “
Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
12
, pp.
103
108
.
26.
Etemad
,
K.
, and
Chellappa
,
R.
, 1994, “
Discriminant Analysis for Recognition of Human Face Images
,”
J. Opt. Soc. Am. A
0740-3232,
14
, pp.
1724
1733
.
27.
Comon
,
P.
, 1994, “
Independent Component Analysis—a New Concept?
,”
Signal Process.
0165-1684,
36
, pp.
287
314
.
28.
Tenenbaum
,
J. B.
,
de Silva
,
V.
, and
Langford
,
J. C.
, 2000, “
A Global Geometric Framework for Nonlinear Dimensionality Reduction
,”
Science
0036-8075,
290
, pp.
2319
2323
29.
Feng
,
T.
,
Li
,
S. Z.
,
Shum
,
H.-Y.
, and
Zhang
,
H. J.
, 2002, “
Local Non-Negative Matrix Factorization as a Visual Representation
,”
Proc. IEEE Int. Conf. on Development and Learning
, pp.
178
183
.
30.
Hwang
,
W. S.
, and
Weng
,
J.
, 2000, “
Hierarchical Discriminant Regression
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
22
, pp.
1277
1293
.
31.
Weng
,
J.
, and
Hwang
,
W. S.
, 2000, “
An Incremental Learning Algorithm with Automatically Derived Discriminating Features
,”
Proc. Asian Conf. on Computer Vision
, pp.
426
431
.
32.
Zeng
,
S.
, and
Weng
,
J.
, 2003, “
Online-learning and Attention-based Approach to Obstacle Avoidance Behavior
,” Technical Report No. MSU-CSE-03-26,
Michigan State University
, Lansing, MI.
33.
Itti
,
L.
,
Koch
,
C.
, and
Niebur
,
E.
, 1998, “
A Model of Saliency-Based Visual Attention for Rapid Scene Analysis
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
20
, pp.
1254
1259
.
34.
Zhang
,
N.
,
Weng
,
J.
, and
Zhang
,
Z.
, 2002, “
A Developing Sensory Mapping for Robots
,”
Proc. Second Int. Conf. on Development and Learning
, pp.
13
20
.
35.
Weng
,
J.
,
Abramovich
,
G.
, and
Dutta
,
D.
, 2003, “
Developmental Vision: Architecture, Invariance, Attention, and Complexity
,” Technical Report No. MSU-CSE-03-19,
Michigan State University, Lansing
, MI.
36.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
, 2001,
Pattern Classification
,
J. Wiley
, New York.
You do not currently have access to this content.