This paper presents a swept envelope approach to determining the optimal tool orientation for five-axis tool-end machining. The swept profile of the cutter is determined based on the tool motion. By analyzing the swept profile against the part geometry, four types of machining errors (local gouge, side gouge, rear gouge, and global collision) are identified. The tool orientation is then corrected to avoid such errors. The cutter’s swept envelope is further constructed by integrating the intermediate swept profiles, and can be applied to NC simulation and verification. This paper analyzes the properties of the swept profile of a general cutter in five-axis tool-end machining. The relation of the swept profile, the part geometry, the tool motion, and the machining errors is developed. Therefore, the error sources can be detected early and prevented during tool path planning. The analytical results indicate that the optimal tool orientation occurs when the curvature of the cutter’s swept profile matches with the curvature of the local part surface. In addition, the optimal cutting direction generally follows the minimum curvature direction. Computer illustrations and example demonstrations are shown in this paper. The results reveal the developed method can accurately determine the optimal tool orientation and efficiently avoid machining errors for five-axis tool-end machining.

1.
Vickers
,
G. W.
, and
Quan
,
K. W.
, 1989, “
Ball-Mills Versus End-Mills for Curved Surface Machining
,”
J. Eng. Ind.
0022-0817,
111
(
1
), pp.
22
26
.
2.
Chiou
,
C.-J.
, and
Lee
,
Y.-S.
, 2002, “
A Machining Potential Field Approach to Tool Path Generation for Multi-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
34
(
5
), pp.
357
371
.
3.
Lee
,
Y.-S.
, 1998, “
Mathematical Modeling Using Different Endmills and Tool Placement Problems for 4- and 5-Axis NC Complex Surface Machining
,”
Int. J. Prod. Res.
0020-7543,
36
(
3
), pp.
785
814
.
4.
Takeuchi
,
Y.
, and
Watanabe
,
T.
, 1992, “
Generation of 5-Axis Control Collision-Free Tool Path and Postprocessing for NC Data
,”
CIRP Ann.
0007-8506,
41
(
1
), pp.
539
542
.
5.
Rubio
,
W.
,
Lagarrigue
,
P.
,
Dessein
,
G.
, and
Pastor
,
F.
, 1998, “
Calculation of Tool Paths for a Torus Mill on Free-Form Surfaces on Five-Axis Machines with Detection and Elimination of Interference
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
14
, pp.
13
20
.
6.
Kim
,
K. I.
,
Chon
,
Y. J.
, and
Kim
,
K.
, 1996, “
Simulation and Verification of CNC Tool Path for Sculptured Surfaces
”,
Trans. NAMRC/SME
1047-3025,
24
, pp.
69
74
.
7.
Waurzyniak
,
P.
, 2001, “
Simulations Speed Production
,”
Manuf. Eng.
0361-0853,
126
(
4
), pp.
36
46
.
8.
Blackmore
,
D.
,
Leu
,
M. C.
, and
Wang
,
L. P.
, 1997, “
The Swept-Envelope Differential Equation Algorithm and its Application to NC Machining Verification
,”
Comput.-Aided Des.
0010-4485,
29
(
9
), pp.
629
638
.
9.
Wang
,
W. P.
, and
Wang
,
K. K.
, 1986, “
Geometric Modeling for Swept Volume of Moving Solids
,”
IEEE Comput. Graphics Appl.
0272-1716,
6
(
12
), pp.
8
17
.
10.
Chung
,
Y. C.
,
Park
,
J. W.
,
Shin
,
H.
, and
Choi
,
B. K.
, 1998, “
Modeling the Surface Swept by a Generalized Cutter for NC Verification
,”
Comput.-Aided Des.
0010-4485,
30
(
8
), pp.
587
594
.
11.
Chiou
C.-J.
and
Lee
Y.-S.
, 1999, “
A Shape-Generating Approach for Multi-Axis Machining G-Buffer Models
,”
Comput.-Aided Des.
0010-4485,
31
(
12
), pp.
761
776
.
12.
Frey
,
D. D.
,
Otto
,
K. N.
, and
Pflager
,
W.
, 1997, “
Swept Envelopes of Cutting Tools in Integrated Machine and Workpiece Error Budgeting
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
475
480
.
13.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 2002, “
Swept Surface Determination for Five-Axis Numerical Control Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
14
), pp.
1497
1507
.
14.
Kral
,
I. H.
, 1986,
Numerical Control Programming in APT
,
Prentice-Hall
, Englewood, Cliffs, NJ, Chap. 7.
15.
Chiou
,
C. J.
, 2004, “
Accurate Tool Position for 5-Axis Ruled Surface Machining by Swept Envelope Approach
,”
Comput.-Aided Des.
0010-4485,
36
(
10
), pp.
967
974
.
16.
Lee
,
Y.-S.
, and
Ji
,
H.
, 1997, “
Surface Interrogation and Machining Strip Evaluation for 5-Axis CNC Die and Mold Machining
,”
Int. J. Prod. Res.
0020-7543,
35
(
1
), pp.
225
252
.
17.
Deng
,
Z.
,
Leu
,
M. C.
,
Wang
,
L.
, and
Blackmore
,
D.
, 1996, “
Determination of Flat-End Cutter Orientation in 5-Axis Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
73
-
80
.
18.
Hibbeler
,
R. C.
, 1989,
Engineering Mechanics - Dynamics
,
Macmillan Publishing Company
, New York, Chap. 21.
19.
Dhande
,
S. G.
,
Karunakaran
,
K. P.
, and
Misra
,
B. K.
, 1995, “
Geometric Modeling of Manufacturing Processes Using Symmetric and Computational Conjugate Geometry
”,
J. Eng. Ind.
0022-0817,
117
(
3
), pp.
288
296
.
20.
Yoon
,
J. H.
,
Pottmann
,
H.
, and
Lee
,
Y. S.
, 2003, “
Locally Optimal Cutting Position for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
35
(
1
), pp.
68
81
.
21.
Faux
,
I. D.
, and
Pratt
,
M. J.
, 1979,
Computational Geometry for Design and Manufacturing
,
John Wiley & Sons
, New York, Chap. 4.
22.
Lee
,
Y.-S.
, and
Chang
,
T.-C.
, 1996, “
Automatic Cutter Selection for 5-Axis Sculptured Surface Machining
,”
Int. J. Prod. Res.
0020-7543,
34
(
4
), pp.
977
998
.
23.
Chiou
,
C. J.
, 2005, “
Floor, Wall, and Ceiling Approach for Pocket Machining
,”
Comput.-Aided Des.
0010-4485,
37
(
4
), pp.
373
385
.
24.
Marciniak
,
K.
, 1987, “
Influence of Surface Shape on Admissible Tool Positions in 5-Axis Face Milling
,”
Comput.-Aided Des.
0010-4485,
19
(
5
), pp.
233
236
.
25.
Kruth
,
J. P.
, and
Klewais
,
P.
, 1994, “
Optimization and Dynamic Adaptation of the Cutter Inclination During Five-Axis Milling of Sculptured Surfaces
,”
CIRP Ann.
0007-8506,
43
(
1
), pp.
443
448
.
26.
Mullins
,
S. H.
,
Jensen
,
C. G.
, and
Anderson
,
D. C.
, 1993, “
Scallop Elimination Based on Precision 5-Axis Tool Placement, Orientation, and Step-Over Calculations
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
65
(
2
), pp.
535
544
.
27.
Dragomatz
,
D.
, and
Mann
,
S.
, 1997, “
A Classified Bibliography Of Literature on NC Milling Path Generation
,”
Comput.-Aided Des.
0010-4485,
29
(
3
), pp.
239
247
.
You do not currently have access to this content.