In this paper we present the second generation receptance coupling substructure analysis (RCSA) method, which is used to predict the tool point response for high-speed machining applications. This method divides the spindle-holder-tool assembly into three substructures: the spindle-holder base; the extended holder; and the tool. The tool and extended holder receptances are modeled, while the spindle-holder base subassembly receptances are measured using a “standard” test holder and finite difference calculations. To predict the tool point dynamics, RCSA is used to couple the three substructures. Experimental validation is provided.
Issue Section:
Technical Papers
1.
Halley
, J.
, Helvey
, A.
, Smith
, K. S.
, and Winfough
, W. R.
, 1999, “The Impact of High-Speed Machining on the Design and Fabrication of Aircraft Components
,” Proc. of the 17th Biennial Conference on Mechanical Vibration and Noise, ASME Design and Technical Conferences
, Las Vegas, NV, September 12–16.2.
Arnold
, R. N.
, 1946, “The Mechanism of Tool Vibration in the Cutting of Steel
,” Proc. Inst. Mech. Eng.
0020-3483, 154
, pp. 261
–284
.3.
Tobias
, S. A.
, and Fishwick
, W.
, 1958, “The Chatter of Lathe Tools under Orthogonal Cutting Conditions
,” Trans. ASME
0097-6822, 80
, p. 1079
.4.
Tlusty
, J.
, and Polocek
, M.
, 1963, “The Stability of the Machine-Tool Against Self-Excited Vibration in Machining
,” Proc. of the International Research in Production Engineering Conference
, Pittsburgh, PA, ASME
, NY, p. 465
.5.
Tobias
, S. A.
, 1965, Machine-Tool Vibration
, Blackie and Sons Ltd.
, Glasgow, Scotland.6.
Koenisberger
, F.
, and Tlusty
, J.
, 1967, Machine Tool Structures—Vol. I: Stability Against Chatter
, Pergamon
, NY7.
Merrit
, H.
, 1965, “Theory of Self-Excited Machine Tool Chatter
,” J. Eng. Ind.
0022-0817, 87
, pp. 447
–454
.8.
Kegg
, R. L.
, 1965, “Cutting Dynamics in Machine Tool Chatter
,” J. Eng. Ind.
0022-0817, 87
, pp. 464
–470
.9.
Shridar
, R.
, Hohn
, R. E.
, and Long
, G. W.
, 1968, “A General Formulation of the Milling Process Equation
,” J. Eng. Ind.
0022-0817, 90
, p. 317
.10.
Shridar
, R.
, Hohn
, R. E.
, and Long
, G. W.
, 1968, “A Stability Algorithm for the General Milling Process
,” J. Eng. Ind.
0022-0817, 90
, p. 330
.11.
Hanna
, N. H.
, and Tobias
, S. A.
, 1974, “A Theory of Nonlinear Regenerative Chatter
,” J. Eng. Ind.
0022-0817, 96
, pp. 247
–255
.12.
Schmitz
, T.
, and Donaldson
, R.
2000, “Predicting High-Speed Machining Dynamics by Substructure Analysis
,” CIRP Ann.
0007-8506, 49
, pp. 303
–308
.13.
Schmitz
, T.
, Davies
, M.
, and Kennedy
, M.
, 2001, “Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,” J. Manuf. Sci. Eng.
1087-1357, 123
, pp. 700
–707
.14.
Schmitz
, T.
, Davies
, M.
, Medicus
, K.
, and Snyder
, J.
, 2001, “Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis
,” CIRP Ann.
0007-8506, 50
, pp. 263
–268
.15.
Schmitz
, T.
, and Burns
, T.
, 2003, “Receptance Coupling for High-Speed Machining Dynamics Prediction
,” Proc. of the 21st International Modal Analysis Conference
, February 3–6, Kissimmee, FL (on CD).16.
Bishop
, R. E. D.
, and Johnson
, D. C.
, 1960, The Mechanics of Vibration
, Cambridge University Press
, Cambridge, UK.17.
Hurty
, W. C.
, 1965, “Dynamic Analysis of Structural Systems Using Component Modes
,” AIAA J.
0001-1452, 3
, pp. 678
–685
.18.
Klosterman
, A. L.
, and Lemon
, J. R.
, 1969, “Building Block Approach to Structural Dynamics
,” American Society of Mechanical Engineering Annual Vibration Conference
, publication VIBR-30.19.
Klosterman
, A. L.
, McClelland
, and Sherlock
, W. I.
, 1977, “Dynamic Simulation of Complex Systems Utilizing Experimental and Analytical Techniques
,” ASME Publication 75-WA/Aero-9.20.
Ewins
, D. J.
, 1986, “Analysis of Modified or Coupled Structures Using FRF Properties
,” Internal Report 86002, Dynamics Section, Department of Mechanical Engineering, Imperial College
, London, UK.21.
Craig
, Jr., R. R.
, 1987, “A Review of Time-Domain and Frequency Domain Component-Mode Synthesis Methods
,” Int. J. Anal. Exp. Modal Anal.
0886-9367, 2
pp. 59
–72
.22.
Jetmundsen
, B.
, Bielawa
, R. L.
, and Flannelly
, W. G.
, 1988, “Generalized Frequency Domain Substructure Synthesis
,” J. Am. Helicopter Soc.
0002-8711, 33
, pp. 55
–64
.23.
Otte
, D.
, Leuridan
, J.
, Grangier
, H.
, and Aquilina
, R.
, 1991, “Prediction of the Dynamics of Structural Assemblies Using Measured FRF Data: Some Improved Data Enhancement Techniques
,” Proc. of the 9th International Modal Analysis Conference (IMAC-1991)
, Florence, Italy, pp. 909
–918
.24.
Farhat
, C.
, and Geradin
, M.
, 1992, “A Hybrid Formulation of a Component Mode Synthesis Method
,” 33rd Structural Dynamics and Materials Conference
, AIAA paper 92-2383-CP, Dallas, TX, pp. 1783
–1796
.25.
Ren
, Y.
, and Beards
, C. F.
, 1993, “A Generalized Receptance Coupling Technique
,” Proc. of the 11th International Modal Analysis Conference (IMAC-1993)
, Kissimmee, FL, pp. 868
–871
.26.
Ren
, Y.
, and Beards
, C. F.
, 1995, “On Substructure Synthesis with FRF Data
,” J. Sound Vib.
0022-460X, 185
, pp. 845
–866
.27.
Ewins
, D. J.
, 2000, Modal Testing: Theory, Practice and Application
, 2nd ed., Research Studies Press
, Philadelphia, PA.28.
Lui
, W.
, and Ewins
, D. J.
, 2002, “Substructure Synthesis Via Elastic Media
,” J. Sound Vib.
0022-460X, 257
, pp. 361
–379
.29.
Ferreira
, J. V.
, and Ewins
, D. J.
, 1996, “Nonlinear Receptance Coupling Approach Based on Describing Functions
,” Proc. of the 14th International Modal Analysis Conference (IMAC-1996)
, Dearborn, MI, pp. 1034
–1040
.30.
Yigit
, A. S.
, and Ulsoy
, A. G.
, 2002, “Dynamic Stiffness Evaluation for Reconfigurable Machine Tools Including Weakly Non-Linear Joint Characteristics
,” Proceedings of the I MECH E Part B Journal of Engineering Manufacture
, 216
, pp. 87
–101
.31.
Park
, S.
, Altintas
, Y.
, and Movahhedy
, M.
, 2003, “Receptance Coupling for End Mills
,” Int. J. Mach. Tools Manuf.
0890-6955, 43
, pp. 889
–896
.32.
Ferreira
, J.
, and Ewins
, D.
, 1995, “Nonlinear Receptance Coupling Approach Based on Describing Functions
,” Proc. of the 14th International Modal Analysis Conference
, Dearborn, MI, pp. 1034
–1040
.33.
Bishop
, R.
, 1955, “The Analysis of Vibrating Systems which Embody Beams in Flexure
,” Proc. Inst. Mech. Eng.
0020-3483, 169
, pp. 1031
–1050
.34.
Weaver
, Jr., W.
, Timoshenko
, P.
, and Young
, D.
, 1990, Vibration Problems in Engineering
, 5th Ed., John Wiley and Sons
, New York.35.
Sattinger
, S.
, 1980, “A Method for Experimentally Determining Rotational Mobilities of Structures
,” Shock Vibr. Bull.
, 50
, pp. 17
–27
.36.
Mathworks
, 2002, Matlab 6.5.0 Release 13: High-Performance Numeric Computation and Visualization Software
, Natick, MA.37.
Schmitz
, T.
, Ziegert
, J.
, Burns
, T.
, Dutterer
, B.
, and Winfough
, W.
, 2004, “Tool-Length Dependent Stability Surfaces
,” Mach. Sci. Technol.
1091-0344, 8
(3
), pp. 1
–21
.38.
Altintas
, Y.
and Budak
, E.
, 1995, “Analytical Prediction of Stability Lobes in Milling
,” CIRP Ann.
0007-8506, 44
, pp. 357
–362
.39.
Yokoyama
, T.
, 1990, “Vibrations of a Hanging Timoshenko Beam Under Gravity
,” J. Sound Vib.
0022-460X, 141
, pp. 245
–258
.40.
Hutchinson
, J.
, 2001, “Shear Coefficients for Timoshenko Beam Theory
,” J. Appl. Mech.
0021-8936, 68
, pp. 87
–92
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.