This paper provides a comprehensive review of the literature, mostly of the last 10–15 years, that is enhancing our understanding of the mechanics of the rapidly growing field of micromachining. The paper focuses on the mechanics of the process, discussing both experimental and modeling studies, and includes some work that, while not directly focused on micromachining, provides important insights to the field. Experimental work includes the size effect and minimum chip thickness effect, elastic-plastic deformation, and microstructure effects in micromachining. Modeling studies include molecular dynamics methods, finite element methods, mechanistic modeling work, and the emerging field of multiscale modeling. Some comments on future needs and directions are also offered.

1.
Friedrich
,
C. R.
, and
Kang
,
S. D.
,
1994
, “
Micro Heat Exchangers Fabricated by Diamond Machining
,”
Precision Eng.
,
16
, pp.
56
59
.
2.
Adams
,
D. P.
,
Vasile
,
M. J.
, and
Krishnan
,
A. S. M.
,
2000
, “
Microgrooving and Microthreading Tools for Fabricating Curvilinear Features
,”
Precision Eng.
,
24
, pp.
347
356
.
3.
Adams
,
D. P.
,
Vasile
,
M. J.
,
Benavides
,
G.
, and
Campbell
,
A. N.
,
2001
, “
Micromilling of Metal Alloys With Focused Ion Beam-Fabricated Tools
,”
Precision Eng.
,
25
, pp.
107
113
.
4.
Egashira
,
K.
,
Mizutani
,
K.
, and
Nagao
,
T.
,
2002
, “
Ultrasonic Vibration Drilling of Microholes in Glass
,”
CIRP Ann.
,
51
, pp.
339
342
.
5.
Egashira
,
K.
, and
Mizutani
,
K.
,
2002
, “
Micro-Drilling of Monocrystalline Silicon Using a Cutting Tool
,”
Precision Engineering
,
26
, pp.
263
268
.
6.
Schaller
,
Th.
,
Bohn
,
L.
,
Mayer
,
J.
, and
Schubert
,
K.
,
1999
, “
Microstructure Grooves With a Width of Less Than 50 μm Cut With Ground Hard Metal Micro End Mills
,”
Precision Eng.
,
23
, pp.
229
235
.
7.
Takeuchi
,
Y.
,
Sawada
,
K.
, and
Sata
,
T.
,
1996
, “
Ultraprecision 3D Micromachining of Glass
,”
CIRP Ann.
,
45
, pp.
401
404
.
8.
Friedrich
,
C. R.
, and
Vasile
,
M. J.
,
1996
, “
Development of the Micromilling Process for High-Aspect-Ratio Microstructures
,”
J. Microelectromech. Syst.
,
5
, pp.
33
38
.
9.
Shoji
,
S.
, and
Esashi
,
M.
,
1994
, “
Microflow Devices and Systems
,”
J. Micromech. Microeng.
,
4
, pp.
157
171
.
10.
Suzuki
,
H.
,
Ohya
,
N.
,
Kawahara
,
N.
,
Yokoi
,
M.
,
Ohyanagi
,
S.
,
Kurahashi
,
T.
, and
Hattori
,
T.
,
1995
, “
Shell-Body Fabrication for Micromachines
,”
J. Micromech. Microeng.
,
5
, pp.
36
40
.
11.
Tritschler
,
H.
,
Schmidt
,
J.
,
Spath
,
D.
,
Elsner
,
J.
, and
Huntrup
,
V.
,
2002
, “
Requirements of an Industrially Applicable Microcutting Process for Steel Micro-Structures
,”
Microsys. Technol.
,
8
, pp.
402
408
.
12.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part II: Analysis of the Size Effect and the Shear Strain-Rate
,”
J. Mech. Phys. Solids
,
51
, pp.
743
762
.
13.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
,
2000
, “
A Study of Apparent Negative Rake Angle and its Effects on Shear Angle During Orthogonal Cutting With Edge-Radiused Tools.
,”
Trans. NAMRI/SME
,
28
, pp.
197
202
.
14.
Kim
,
C. J.
,
Bono
,
M.
, and
Ni
,
J.
,
2002
, “
Experimental Analysis of Chip Formation in Micro-Milling
,”
Trans. NAMRI/SME
,
30
, pp.
1
8
.
15.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
,
1996
, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
,
62
, pp.
327
330
.
16.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
,
Ohmori
,
G.
,
Uchikoshi
,
J.
, and
Yoshinaga
,
H.
,
1993
, “
Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation
,”
CIRP Ann.
,
42
, pp.
91
94
.
17.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschle
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.
,
50
, pp.
61
64
.
18.
Vogler, M. P., DeVor, R. E., and Kapoor, S. G., 2001, “Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials,” Proc. ASME Manufacturing Engineering Division (MED-vol. 12) ASME International Mechanical Engineering Congress and Exposition, NY, pp. 3–10.
19.
Lucca
,
D. A.
,
Rhorer
,
R. L.
, and
Komanduri
,
R.
,
1991
, “
Energy Dissipation in the Ultraprecision Machining of Copper
,”
CIRP Ann.
,
40
, pp.
69
72
.
20.
Lucca
,
D. A.
, and
Seo
,
Y. W.
,
1993
, “
Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining
,”
CIRP Ann.
,
42
, pp.
83
86
.
21.
Lucca
,
D. A.
,
Seo
,
Y. W.
, and
Rhorer
,
R. L.
,
1994
, “
Energy Dissipation and Tool-Workpiece Contact in Ultra-Precision Machining
,”
STLE Tribol. Trans.
,
37
, pp.
651
655
.
22.
Taminiau
,
D. A.
, and
Dautzenberg
,
J. H.
,
1991
, “
Bluntness of the Tool and Process Forces in High-Precision Cutting
,”
CIRP Ann.
,
40
, pp.
65
68
.
23.
Ikawa
,
N.
,
Shimada
,
S.
,
Tanaka
,
H.
, and
Ohmori
,
G.
,
1991
, “
Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning
,”
CIRP Ann.
,
40
, pp.
551
554
.
24.
Ikawa
,
N.
,
Donaldson
,
R. R.
,
Komanduri
,
R.
,
Koenig
,
W.
,
Aachen
,
T. H.
,
McKeown
,
P. A.
,
Moriwaki
,
T.
, and
Stowers
,
I. F.
,
1991
, “
Ultraprecision Metal Cutting, The Past, the Present, and the Future
,”
CIRP Ann.
,
40
, pp.
587
594
.
25.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-endmilling, Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
684
693
.
26.
Damazo, B. N., Davies, M. A., Dutterer, B. S., and Kennedy, M. D., 1999, “A Summary of Micro-Milling Studies,” Proc. of 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology, Bremen, Germany, European Society of Precision Engineering, pp. 322–325.
27.
Lee
,
K.
, and
Dornfeld
,
D. A.
,
2002
, “
An Experimental Study on Burr Formation in Micro Milling Aluminum and Copper
,”
Trans. NAMRI/SME
,
30
, pp.
1
8
.
28.
Iwata
,
K.
,
Moriwaki
,
T.
, and
Okuda
,
K.
,
1987
, “
A Study of Cutting Temperature in Ultra-high Precision Diamond Cutting of Copper
,”
Transaction of the NAMRI/SME
,
15
, pp.
510
515
.
29.
Moriwaki
,
T.
,
Horiuchi
,
A.
, and
Okuda
,
K.
,
1990
, “
Effect of Cutting Heat on Machining Accuracy in Ultra-Precision Diamond Turning
,”
CIRP Ann.
,
39
, pp.
81
84
.
30.
Tansel
,
I. N.
,
Arkan
,
T. T.
,
Bao
,
W. Y.
,
Mahendrakar
,
N.
,
Shisler
,
B.
,
Smith
,
D.
, and
McCool
,
M.
,
2000
, “
Tool Wear Estimation in Micro-Machining. Part I: Tool Usage-Cutting Force Relationship
,”
Int. J. Mach. Tool Des. Res.
,
40
, pp.
599
608
.
31.
Tansel
,
I.
,
Rodriguez
,
O.
,
Trujillo
,
M.
,
Paz
,
E.
, and
Li
,
W.
,
1998
, “
Micro-End-Milling—I. Wear and Breakage
,”
Int. J. Mach. Tool Des. Res.
,
38
, pp.
1419
1436
.
32.
Lucca
,
D. A.
,
Seo
,
Y. W.
,
Rhorer
,
R. L.
, and
Donaldson
,
R. R.
,
1994
, “
Aspects of Surface Generation in Orthogonal Ultraprecision Machining
,”
CIRP Ann.
,
43
, pp.
43
46
.
33.
Blake
,
P. N.
, and
Scattergood
,
R. O.
,
1990
, “
Ductile-Regime Machining of Germanium and Silicon
,”
J. Am. Ceram. Soc.
,
73
, pp.
949
957
.
34.
Li, D., Dong, S., Zhao, Y., and Zhou, M., 1999, “The Influence of Rake of Diamond Tool on the Machined Surface of Brittle Materials With Finite Element Analysis,” Proc. of 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology, Bremen, Germany, European Society of Precision Engineering, pp. 338–341.
35.
Ichida, Y., 1999, “Ductile Mode Maching of Single Crystal Silicon Using a Single Point Diamond Tool,” Proc. of 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology, Bremen, Germany, European Society of Precision Engineering, pp. 330–333.
36.
Kaji, S., Goto, T., Sumomogi, T., and Nakamura, M., 1999, “The Study of Ductile-Brittle Transition on Micro-Cutting of Single Crystal Silicon,” Proc. Annual Meeting of the ASPE, Vol. 20, pp. 107–110.
37.
Arefin, S., Liu, K., Li, X. P., and Rahman, M., 2004, “Cutting Conditions and Tool Edge Radius for Nanoscale Ductile Cutting of Silicon Wafer,” Proc. of 2004 Japan-USA Symposium on Flexible Automation, CD, Paper No. UL_031.
38.
Albrecht
,
P.
,
1960
, “
New Developments in Theory of Metal-Cutting Process—1. Ploughing Process in Metal Cutting
,”
ASME J. Eng. Ind.
,
82
, pp.
348
358
.
39.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
,
2000
, “
A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool
,”
ASME J. Manuf. Sci. Eng.
,
122
, pp.
384
390
.
40.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
693
698
.
41.
Zhang
,
H. T.
,
Liu
,
P. D.
, and
Hu
,
R. S.
,
1991
, “
A Three-Cap Model and Solution of Shear Angle in Orthogonal Machining
,”
Wear
,
143
, pp.
29
43
.
42.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1999
, “
An Evaluation of Ploughing Models for Orthogonal Machining
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
550
558
.
43.
Kountanya, R. K., and Endres, W. J., 2001, “A High-Magnification Experimental Study of Orthogonal Cutting With Edge-Honed Tools,” ASME Proceedings of the ASME Manufacturing Engineering Division (MED-Vol. 12), 2001 ASME International Mechanical Engineering Congress and Exposition, N.Y., pp. 157–164.
44.
Taniyama
,
H.
,
Eda
,
H.
,
Zhou
,
L.
,
Shimizu
,
J.
, and
Sato
,
J.
,
2003
, “
Experimental Investigation of Micro Scratching on the Two-Phase Steel: Plastic Flow Mechanisms of the Ferrite and Cementite Phases
,”
Key Eng. Mater.
,
238-239
, pp.
15
18
.
45.
Jardret
,
V.
,
Zahouani
,
H.
,
Loubet
,
J. L.
, and
Mathia
,
T. G.
,
1998
, “
Understanding and Quantification of Elastic and Plastic Deformation During a Scratch Test
,”
Wear
,
218
, pp.
8
14
.
46.
Moriwaki
,
T.
,
Sugimura
,
N.
,
Manabe
,
K.
, and
Iwata
,
K.
,
1991
, “
A Study on Orthogonal Micromachining of Single Crystal Copper
,”
Transaction of the NAMRI/SME
,
19
, pp.
177
183
.
47.
Ueda
,
K.
, and
Iwata
,
K.
,
1980
, “
Chip Formation Mechanism in Single Crystal Cuting of Beta-Brass
,”
CIRP Ann.
,
29
, pp.
65
68
.
48.
To
,
S.
,
Lee
,
W. B.
, and
Chan
,
C. Y.
,
1997
, “
Ultraprecision Diamond Turning of Aluminum Single Crystals
,”
J. Mater. Process. Technol.
,
63
, pp.
157
162
.
49.
Lee
,
W. B.
,
To
,
S.
, and
Cheung
,
C. F.
,
2000
, “
Effect of Crystallographic Orientation in Diamond Turning of Copper Single Crystals
,”
Scr. Mater.
,
42
, pp.
937
945
.
50.
Patten, J., Mundy, P., Fang, N., and Domblesky, J., 2004, “Advanced Machining of Alternative Materials—Part A: Cutting Mechanics,” [SME International Manufacturing Technology Summit], Dearborn, MI, Proc. of 1st Annual Manufacturing Technology Summit Conference, 2004, Dearborn, MI, pp. 1–11.
51.
Belak, J. and Stowers, I. F., 1990, “A Molecular Dynamics Model of the Orthogonal Cutting Process,” Proc. of ASPE Annual Conference, Oct. 13–18, 1991, pp. 100–104.
52.
Belak, J., Lucca, D. A., Komanduri, R., Rhoerer, R. L., Moriwaki, K., Okuda, S., Ikawa, N., Shimada, S., Tanaka, H., Dow, T. A., Drescher, J. D., and Stowers, I. F., 1991, “Molecular Dynamics Simulation of the Chip Formation Process in Single Crystal Copper and Comparison With Experimental Data,” Proc. ASPE Annual Conference, Oct. 13–18, pp. 100–109.
53.
Ikawa
,
N.
,
Shimada
,
S.
, and
Tanaka
,
H.
,
1992
, “
Minimum Thickness of Cut in Micromachining
,”
Nanotechnology
,
3
, pp.
6
9
.
54.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
1998
, “
Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach
,”
Wear
,
219
, pp.
84
97
.
55.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
1999
, “
Orientation Effects in Nanometric Cutting of Single Crystal Materials: An MD Simulation Approach
,”
CIRP Ann.
,
48
, pp.
67
72
.
56.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
2000
, “
M.D. Simulation of Nanometric Cutting of Single Crystal Aluminum-Effect of Crystal Orientation and Direction of Cutting
,”
Wear
,
242
, pp.
60
88
.
57.
Liu, X., Vogler, M. P., Kapoor, S. G., DeVor, R. E., Ehmann, K. F., Mayor, R., Kim Changju, and Ni, J., 2004, “Micro-Endmilling With Meso-Machine-Tool System,” NSF Design, Service and Manufacturing Grantees and Research Conference Proc., Dallas, TX.
58.
Moriwaki
,
T.
,
Sugimura
,
N.
, and
Luan
,
S.
,
1993
, “
Combined Stress, Material Flow and Heat Analysis of Orthogonal Micromachining of Copper
,”
CIRP Ann.
,
42
, pp.
75
78
.
59.
Dinesh, D., Swaminathan, S., Chandrasekar, S., and Farris, T. N., 2001, “An Intrinsic Size-Effect in Machining Due to the Strain Gradient,” Proc. ASME Manufacturing Engineering Division (MED-vol. 12), ASME International Mechanical Engineering Congress and Exposition, NY, pp. 197–204.
60.
Liu, K., and Melkote, S. N., 2004, “A Strain Gradient Based Finite Element Model for Micro/Meso-Scale Orthogonal Cutting Process,” Proc. of 2004 Japan-USA Symposium on Flexible Automation, Denver, CO, Paper No. UL_048.
61.
Kopalinsky, E. M., and Oxley, P. L. B., 1984, Size Effect in Metal Removal Processes, Inst of Physics, Bristol, pp. 389–396.
62.
Chuzhoy, L., DeVor, R. E., Kapoor, S. G., and Bammann, D. J., 2001, “Microstructure-Level Modeling of Ductile Iron Machining,” Proc. ASME Manufacturing Engineering Division (MED-Vol. 12), 2001 ASME International Mechanical Engineering Congress and Exposition, NY, pp. 125–134.
63.
Inamura
,
T.
,
Takezawa
,
N.
,
Kumai
,
Y.
, and
Sata
,
T.
,
1994
, “
On a Possible Mechanism of Shear Deformation in Nanoscale Cutting
,”
CIRP Ann.
,
43
, pp.
47
50
.
64.
Abraham
,
F. F.
,
Broughton
,
J. Q.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
,
1998
, “
Spanning the Length Scales in Dynamic Simulation
,”
Comput. Phys.
,
12
, pp.
538
546
.
65.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
,
1999
, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
,
60
, pp.
2391
2403
.
66.
Lidorikis, E., Bachlechner, M. E., Kalia, R. K., Voyiadjis, G. Z., Nakano, A., and Vashishta, P., 2001, Coupling of Length Scales: Hybrid Molecular Dynamics and Finite Element Approach for Multiscale Nanodevice Simulations, Materials Research Society, Boston, pp. 9–3.
67.
Zhigilei, L. V., 2001, Computational Model for Multiscale Simulation of Laser Ablation, Materials Research Society, San Francisco, pp. 2–1.
68.
Kim
,
J. D.
, and
Kim
,
D. S.
,
1995
, “
Theoretical Analysis of Micro-Cutting Characteristics in Ultra-Precision Machining
,”
J. Mater. Process. Technol.
,
49
, pp.
387
398
.
69.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “On the Modeling and Analysis of Machining Performance in Micro-Endmilling, Part II: Cutting Force Prediction,” ASME J. Manuf. Sci. Eng., Proc. ASME Manufacturing Engineering Division (MED-vol. 15), ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA. Paper No. IMECE 2004-62416.
70.
Joshi, S., and Melkote, S., 2002, “An Explanation for the Size-Effect in Machining Using Strain Gradient Plasticity,” JSME/ASME Int. Conf. On Materials and Processing, pp. 318–323.
71.
Liu, X., Jun, M. B. G., DeVor, R. E., and Kapoor, S. G., 2004, “Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-Endmilling,” Proc. ASME Manufacturing Engineering Division (MED-15), ASME International Mechanical Engineering Congress and Exposition, Anaheim CA. Paper No. IMECE2004–62416.
You do not currently have access to this content.