Laser-assisted machining (LAM) of magnesia-partially-stabilized zirconia (PSZ) is investigated to determine the effect of heating on machinability, as determined by tool wear, cutting energy, surface integrity, and material removal mechanisms. It is found that PSZ can be successfully machined with a polycrystalline cubic boron nitride tool and that tool life increases with material removal temperature up to a maximum of 121 minutes. The benefit of laser-assistance in material removal is also demonstrated by the 2.5 fold decrease in the specific cutting energy with increased temperature. It is shown surface roughness varies significantly with tool wear with little dependence on cutting temperature unlike in LAM of other ceramics. Evidence of mixed brittle and ductile material removal mechanisms is presented, and the optimum condition within the test matrix is established.

1.
Ko¨nig, W., and Zaboklicki, A. K., 1993, “Laser-Assisted Hot Machining of Ceramics and Composite Materials,” International Conference on Machining of Advanced Materials, S. Jahanmir, ed., NIST Special Publication 847, pp. 455–463.
2.
Rozzi
,
J. C.
,
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
2000
, “
Experimental Evaluation of the Laser Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
666
670
.
3.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
2001
, “
Experimental Investigation of Thermo-Mechanical Characteristics in Laser Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
123
, pp.
639
646
.
4.
Rebro
,
P. A.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
2002
, “
Laser Assisted Machining of Reaction Sintered Mullite Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
875
885
, Nov.
5.
Rebro
,
P. A.
,
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
2002
, “
Comparative Assessment of Laser-Assisted Machining for Various Ceramics
,”
Transactions of NAMRI/SME
,
30
, pp.
153
160
.
6.
Ko¨nig
,
W.
,
Cronja¨ger
,
L.
,
Spur
,
G.
,
To¨nshoff
,
H. K.
,
Vigneau
,
M.
, and
Zdeblick
,
W. J.
,
1990
, “
Machining of New Materials
,”
CIRP Ann.
,
39
(
2
), pp.
673
681
.
7.
Allor
,
R. L.
, and
Jahanmir
,
S.
,
1996
, “
Current Problems and Future Directions for Ceramic Machining
,”
Am. Ceram. Soc. Bull.
,
75
(
7
), pp.
40
43
.
8.
Chand
,
R. H.
, and
Guo
,
C.
,
1996
, “
What’s Happening with Machining of Ceramics?
Manuf. Eng.
,
117
(
4
), pp.
74
81
.
9.
Farris
,
T. N.
, and
Chandrasekar
,
S.
,
1989
, “
On the Characterization and Control of Surface Finishing Damage in Ceramics
,”
J. Mech. Work. Technol.
,
20
, pp.
69
78
.
10.
Xu
,
H. H. K.
,
Jahanmir
,
S.
, and
Ives
,
K.
,
1996
, “
Material Removal and Damage Formation Mechanisms in Grinding Silicon Nitride
,”
J. Mater. Res.
,
11
(
7
), pp.
1717
1724
.
11.
Xu
,
H. H. K.
,
Jahanmir
,
S.
, and
Ives
,
L. K.
,
1997
, “
Effect of Grinding on Strength of Tetragonal Zirconia and Zirconia-Toughened Alumina
,”
Mach. Sci. Technol.
,
1
(
1
), pp.
49
66
.
12.
Makino
,
T.
,
Kunitomo
,
T.
,
Sakai
,
I.
, and
Kinoshita
,
H.
,
1984
, “
Thermal Radiation Properties of Ceramic Materials
,”
Heat Transfer Jpn. Res.
,
13
(
4
), pp.
33
50
.
13.
Gauthier, M. M., 1995, Engineered Materials Handbook, ASM International, Materials Park, OH.
14.
Munz, D., and Fett, T., 1999, Ceramics: Mechanical Properties, Failure Behavior, Materials Selection, Springer-Verlag, Berlin.
15.
MCIC/Battelle, 1976, “Engineering Property Data on Selected Ceramics Volume I, Nitrides,” MCIC-HB-07-Vol. I, Metals and Ceramics Information Center, Columbus, Ohio.
16.
Schneider, S. J., 1987, Engineered Materials Handbook, Vol. 4–Ceramics and Glasses, ASM International, Materials Park, OH.
17.
Taylor, R. E., Groot, H., and Ferrier, J., 1998, “Thermophysical Properties of Si3N4,” TPRL 2128, TPRL, Inc., West Lafayette, IN.
18.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter: The TPRC Data Series, IFI/Plenum, New York.
19.
Taylor, R. E., Groot, H., and Ferrier, J., 2000, “Thermophysical Properties of TBC,” TPRL 2438, TPRL, Inc., West Lafayette, IN.
20.
Touloukian, Y. S., 1967, Thermophysical Properties of High Temperature Solid Materials, The Macmillan Company, New York.
21.
Grain
,
C. F.
,
1967
, “
Phase Relations in the ZrO2-MgO System
,”
J. Am. Ceram. Soc.
,
50
(
6
), pp.
288
290
.
22.
Uehara
,
K.
, and
Takeshita
,
H.
,
1986
, “
Cutting Ceramics with a Technique of Hot Machining
,”
CIRP Ann.
,
35
(
1
), pp.
55
58
.
23.
Kitagawa
,
T.
, and
Maekawa
,
K.
,
1990
, “
Plasma Hot Machining for New Engineering Materials
,”
Wear
,
139
, pp.
251
267
.
24.
Pfefferkorn
,
F. E.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
,
2002
, “
Surface Temperature Measurement of Semi-Transparent Ceramics by Long-Wavelength Pyrometry
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
48
56
.
25.
Pfefferkorn, F. E., 2002, “Laser-Assisted Machining of Zirconia Ceramics,” Ph.D., Purdue University, West Lafayette.
26.
Pfefferkorn, F. E., Incropera, F. P., and Shin, Y. C., (In Review), “Heat Transfer Model of Semi-Transparent Ceramics undergoing Laser-Assisted Machining,” Int. J. Heat Mass Transfer.
27.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw Hill, New York.
28.
Bowman, K. J., Pfefferkorn, F. E., and Shin, Y. C., 2002, “Recrystallization Textures during Laser-Assisted Machining of Zirconia Ceramics,” 13th International Conference on Texture of Materials, Materials Science Forum, Vol. 408–412, pp. 1669–1674. Trans. Tech. Publications, Switzerland.
29.
Lei
,
S.
,
Shin
,
Y.
, and
Incropera
,
F.
,
2000
, “
Deformation Mechanisms and Constitutive Modeling for Silicon Nitride Undergoing Laser-Assisted Machining
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2213
2233
.
30.
MCIC/Battelle, 1981, “Engineering Property Data on Selected Ceramics Volume III, Single Oxides,” MCIC-HB-07-Vol. III, Metals and Ceramics Information Center, Columbus, Ohio.
You do not currently have access to this content.