This paper presents a method of diagnosing variance components of process error sources in singular manufacturing systems. The singularity problem is studied and the cause examined in the context of fixture error diagnosis in multi-station assembly processes. The singularity problem results in nondiagnosable fixture errors when standard least-squares (LS) estimation methods are used. This paper suggests a reformulation of the original error propagation model into a covariance relation. The LS criterion is then applied directly to the sample covariance matrix to estimate the variance components. Diagnosability conditions for this variance LS estimator are derived, and it is demonstrated that certain singular systems that are not diagnosable using traditional LS methods become diagnosable with the variance LS estimator. Modified versions that improve the accuracy of the variance LS estimator are also presented. The various procedures are thoroughly contrasted, in terms of accuracy and diagnosability. The results are illustrated with examples from panel assembly, although the application of the approach and the conclusions extend to more general discrete-part manufacturing processes where fixtures are used to ensure dimensional accuracy of the final product.

1.
Shalon, D., Gossard, D., Ulrich, K., and Fitzpatrick, D., 1992, “Representing Geometric Variations in Complex Structural Assemblies on CAD Systems,” Proceedings of the 19th Annual ASME Advances in Design Automation Conference, DE-Vol. 44-2, pp. 121–132.
2.
Ceglarek
,
D.
, and
Shi
,
J.
,
1995
, “
Dimensional Variation Reduction for Automotive Body Assembly
,”
Manufacturing Review
,
8
, pp.
139
154
.
3.
Cunningham, T. W., Mantripragada, R., Lee, D. J., Thornton, A. C., and Whitney D. E., 1996, “Definition, Analysis, and Planning of a Flexible Assembly Process,” Proceedings of the 1996 Japan/USA Symposium on Flexible Automation, Vol. 2, pp. 767–778.
4.
Ceglarek
,
D.
, and
Shi
,
J.
,
1996
, “
Fixture Failure Diagnosis for the Autobody Assembly Using Pattern Recognition
,”
ASME J. Ind.
,
118
, pp.
55
66
.
5.
Apley
,
D. W.
, and
Shi
,
J.
,
1998
, “
Diagnosis of Multiple Fixture Faults in Panel Assembly
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
793
801
.
6.
Chang
,
M.
, and
Gossard
,
D. C.
,
1998
, “
Computational Method for Diagnosis of Variation-Related Assembly Problem
,”
Int. J. Prod. Res.
,
36
, pp.
2985
2995
.
7.
Rong
,
Q.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2000
, “
Dimensional Fault Diagnosis for Compliant Beam Structure Assemblies
,”
ASME J. Manuf. Sci. Eng.
,
122
, pp.
773
780
.
8.
Carlson, J. S., Lindkvist, L., and Soderberg, R., 2000, “Multi-Fixture Assembly System Diagnosis Based on Part and Subassembly Measurement Data,” Proceedings of the 2000 ASME Design Engineering Technical Conference, September 10–13, Baltimore, MD.
9.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2002
, “
Fault Diagnosis of Multi-Station Manufacturing Processes by Using State Space Approach
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
313
322
.
10.
Ding
,
Y.
,
Shi
,
J.
, and
Ceglarek
,
D.
,
2002
, “
Diagnosability Analysis of Multi-Station Manufacturing Processes
,”
ASME J. Dyn. Syst., Meas., Control
,
124
, pp.
1
13
.
11.
Rong
,
Q.
,
Shi
,
J.
, and
Ceglarek
,
D.
,
2001
, “
Adjusted Least Squares Approach for Diagnosis of Ill-Conditioned Compliant Assemblies
,”
ASME J. Manuf. Sci. Eng.
,
123
, pp.
453
461
.
12.
Schott, J. R., 1997, Matrix Analysis for Statistics, John Wiley & Sons, New York.
13.
Golub, G. H., and Van Loan, C. F., 1996, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD.
14.
Geladi
,
P.
, and
Kowalski
,
B. R.
,
1986
, “
Partial Least-Squares Regression: A Tutorial
,”
Anal. Chim. Acta
,
185
, pp.
1
17
.
15.
Beck, J. V., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, John Wiley & Sons, New York.
16.
Hasan
,
W. M.
, and
Viloa
,
E.
,
1997
, “
Use of the Singular Value Decomposition Method to Detect Ill-Conditioning of Structural Identification Problems
,”
Comput. Struct.
,
63
, pp.
267
275
.
17.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
756
762
.
18.
Ding, Y., Ceglarek, D., and Shi, J., 2000, “Modeling and Diagnosis of Multi-Station Manufacturing Processes: Part I State Space Model,” Proceedings of the 2000 Japan/USA Symposium on Flexible Automation, July 23–26, Ann Arbor, MI, 2000JUSFA-13146.
19.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
1999
, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
,
15
, pp.
124
140
.
20.
Camelio, A. J., Hu, S. J., and Ceglarek, D. J., 2001, “Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts,” Proceedings of the 2001 ASME Design Engineering Technical Conferences, September 9–12, Pittsburgh, PA.
21.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2001
, “
Linear State Space Modeling of Dimensional Machining Errors
,”
Transactions of NAMRI/SME
,
XXIX
, pp.
541
548
.
22.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
,
2003
, “
State Space Modeling for Dimensional Monitoring of Multistage Machining Process Using Differential Motion Vector
,”
IEEE Trans. Rob. Autom.
,
19
, pp.
296
308
.
23.
Luenberger, D. G., 1968, Optimization by Vector Space Methods, Wiley, New York.
24.
Pukelsheim, F., 1993, Optimal Design of Experiments, John Wiley and Sons, New York.
25.
Anderson
,
T. W.
,
1973
, “
Asymptotic Efficient Estimation of Covariance Matrices With Linear Structure
,”
Annals of Statistics
,
1
,
135
141
.
26.
Neter, J., Hutner, M. H., Nachtsheim, C. J., and Wasserman, W., 1996, Applied Linear Statistical Models, 4th ed., McGraw Hill-Irwin, Chicago, IL.
27.
Rao, C. R., and Kleffe, J., 1988, Estimation of Variance Components and Applications, North-Holland, Amsterdam, p. 225.
You do not currently have access to this content.