Microscale Laser Shock Peening (LSP), also known as Laser Shock Processing, is a technique that can be potentially applied to manipulate residual stress distributions in metal film structures and thus improve the fatigue performances of micro-devices made of such films. In this study, microscale LSP of copper films on single crystal silicon substrate is investigated. Before and after-process curvature measurement verifies that sizable compressive residual stress can be induced in copper thin films using microscale LSP. Improved modeling work of shock pressure is summarized and the computed shock pressure is used as loading in 3D stress/strain analysis of the layered film structure. Simulation shows that the stress/strain distribution in the metal film is close to equi-biaxial and is coupled into the silicon substrate.

1.
Miller, S. L., Rodgers, M. S., LaVigine, G., Sniegowski, J. J., Clews, P., Tanner, D. M., and Peterson, K. A., 1998, “Failure Modes in Surface Micromachined Micro-Electro-Mechanical Actuators,” IEEE 98CH36173, 36th Annual International Reliability Physics Symposium, pp. 17–25.
2.
Tanner, D. M., Walraven, J. A., Helgesen, K. S., Irwin, L. W., Gregory, D. L., Stake, J. R., and Smith, N. F., 2000, “MEMS Reliability in a Vibration Environment,” IEEE 00CH37059, 38th Annual International Reliability Physics Symposium, pp. 139–145.
3.
Chang
,
C.
, and
Chang
,
P.
,
2000
, “
Innovative Micromachined Microwave Switch with Very Low Insertion Loss
,”
Sens. Actuators A
,
79
(
1
), Jan., pp.
71
75
.
4.
Tanner
,
D. M.
,
Miller
,
W. M.
,
Peterson
,
K. A.
,
Dugger
,
M. T.
,
Eaton
,
W. P.
,
Irwin
,
L. W.
,
Senft
,
D. C.
,
Smith
,
N. F.
,
Tangyunyong
,
P.
, and
Miller
,
S. L.
,
1999
, “
Frequency Dependence of the Lifetime of a Surface Micromachined Microengine Driving a Load
,”
Microelectron. Reliab.
,
39
(
3
), pp.
401
414
.
5.
Walraven, J. A., Mani, S. S., Fleming, J. G., Headley, T. J., Kotula, P. G., Pimentel, A. A., Rye, M. J., Tanner, D. M., and Smith, N. F., 2000, “Failure Analysis of Tungsten Coated Polysilicon Micromachined Microengines,” MEMS Reliability for Critical Applications, Proceedings of SPIE, Vol. 4180, pp. 49–57.
6.
Petersen
,
Kurt E.
,
1982
, “
Silicon as a Mechanical Material
,”
Proc. IEEE
,
70
(
5
), pp.
420
457
.
7.
Johansen
,
L. S.
,
Ginnerup
,
M.
,
Ravnkilde
,
J. T.
,
Tang
,
P. T.
, and
Lo¨chel
,
B.
,
2000
, “
Electroforming of 3D Microstructures on Highly Structured Surfaces
,”
Sens. Actuators A
,
83
(
1–3
), pp.
156
160
.
8.
Hart
,
T.
, and
Watson
,
A.
,
2000
, “
Electroforming
,”
Metal Finishing
,
98
(
1
), pp.
388
399
.
9.
Wei
,
Z.-J.
et al.
,
2000
, “
Study of Wetters in Nickel Electroforming of 3D Microstructures
,”
Mater. Chem. Phys.
,
63
, pp.
235
239
.
10.
Zhang, W., and Yao, Y. L., 2000, “Improvement of Laser Induced Residual Stress Distributions via Shock Waves,” Proc. ICALEO’00, Laser Materials Processing, Vol. 89, pp. E183–192.
11.
Zhang
,
W.
, and
Yao
,
Y. L.
,
2000b
, “
Micro Scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), May, pp.
369
378
.
12.
Noyan
,
I. C.
,
Jordan-Sweet
,
J. L.
,
Liniger
,
E. G.
, and
Kaldor
,
S. K.
,
1998
, “
Characterization of Substrate/Thin-film Interfaces with X-ray Microdiffraction
,”
Appl. Phys. Lett.
,
72
(
25
), pp.
3338
3340
.
13.
Suresh
,
S.
, and
Giannakopoulos
,
A. E.
,
1998
, “
A New Method for Estimating Residual Stresses by Instrumented Sharp Indentation
,”
Acta Mater.
,
46
, pp.
5755
5767
.
14.
Fox
,
J. A.
,
1974
, “
Effect of Water and Paint Coatings on Laser-irradiated Targets
,”
Appl. Phys. Lett.
,
24
(
10
), pp.
461
464
.
15.
Segmu¨ller
,
A.
,
Angilelo
,
J.
, and
La Placa
,
S. J.
,
1980
, “
Automatic X-ray Diffraction Measurement of the Lattice Curvature of Substrate Wafers for the Determination of Linear Strain Patterns
,”
J. Appl. Phys.
,
51
(
12
), pp.
6224
6230
.
16.
Stoney
,
G. G.
,
1909
, “
Metallic Films Deposited by Electrolysis
,”
Proc. Royal Soc.
,
82
(
535
), pp.
172
175
.
17.
Clauer, A. H., and Holbrook, J. H., 1981, “Effects of Laser Induced Shock Waves on Metals,” Shock Waves and High Strain Phenomena in Metals-Concepts and Applications, New York, Plenum, pp. 675–702.
18.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser-produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
.
19.
Zhang, W., and Yao, Y. L., 2001, “Modeling and Simulation Improvement in Laser Shock Processing,” Proc. ICALEO’2001, Section A.
20.
Root, R. G., 1989, “Modeling of Post-breakdown Phenomena,” Laser Induced Plasmas and Application, New York, Marcel Dekker, Inc., pp. 95–99.
21.
Pirri
,
A. N.
,
1978
, “
Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers
,”
AIAA J.
,
16
(
12
), pp.
1296
1304
.
22.
Vogel
,
A.
,
Nahen
,
K.
,
Theisen
,
D.
, and
Noack
,
J.
,
1996
, “
Plasma Formation in Water by Picosecond and Nanosecond Nd:YAG Laser Pulses
,”
IEEE J. Sel. Top. Quantum Electron.
,
2
(
4
), pp.
847
871
.
23.
Assay, James R., and Shahipoor, M., 1992, High-Pressure Shock Compression of Solids, New York, Springer-Verlag, pp. 78–82.
24.
Meyer, L. W., 1992, “Constitutive Equations at High Strain Rates,” Shock Wave and High-Strain-Rate Phenomena in Metals, New York, Marcel Dekker, Inc., pp. 49–68.
25.
Teixeira
,
V.
,
2001
, “
Mechanical Integrity in PVD Coatings due to the Presence of Residual Stresses
,”
Thin Solid Films
,
392
, pp.
276
281
.
26.
Sridhar
,
N.
,
Srolovitz
,
D. J.
, and
Suo
,
Z.
,
2001
, “
Kinetics of Buckling of a Compressed Film on a Viscous Substrate
,”
Appl. Phys. Lett.
,
78
(
17
), pp.
2482
2484
.
27.
Scheffler
,
D. R.
, and
Zukas
,
J. A.
,
2000
, “
Practical Aspects of Numerical Simulation of Dynamic Events: Material Interfaces
,”
Int. J. Impact Eng.
,
24
, pp.
821
842
.
28.
Espinosa
,
H. D.
,
Dwivedi
,
S.
, and
Lu
,
H.-C.
,
2000
, “
Modeling Impact Induced Delamination of Woven Fiber Reinforced Composites with Contact/Cohesive Laws
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3–4
), pp.
259
290
.
You do not currently have access to this content.