A nonlinear model describing the dynamical interaction between work rolls and metal sheets and the initiation of fifth octave rolling chatter is presented. The model, which comprises a work roll sub-model and a metal sheet roll-bite sub-model, enables the instability of strip rolling to be qualitatively and quantitatively studied as a function of rollstack stiffness, rolling speed, inter-stand tension, roll-bite entry and exit thickness, and the sheet force resulted from the interactive action of the work roll with the plastic deformation of the rolled strip. It is concluded that, even though the governing dynamics is highly nonlinear, rolling chatter instability is none other than mode excitation or beating, and thus linear. Analyzed results correspond well with what have been observed in physical rolling mills. Specifically, the natural frequency predicted for a 4-H rolling stand fits the fifth octave chatter at 550∼650 Hz and there is a critical rolling speed (2.54 m/sec for the material and sheet configurations considered in the paper) beyond which rolling instability will occur. This research establishes the fundamental knowledge base required for the understanding of chatter characteristics and mechanism, and thus provides the essential bases for effective control of rolling instability and chatter-free roll mill design.

1.
Roberts
,
W. L.
,
1978
, “
Four-H Mill-Stand Chatter of the Fifth-Octave Mode
,”
Iron and Steel Engineer
,
55
, October ,pp.
41
47
.
2.
Tlusty
,
J.
,
Chandra
,
G.
,
Critchley
,
S.
, and
Paton
,
D.
,
1982
, “
Chatter in Cold Rolling
,”
CIRP Ann.
,
31
(
1
), pp.
195
199
.
3.
Chefneux
,
L.
,
Fischbach
,
J.-P.
, and
Gouzou
,
J.
,
1984
, “
Study and Industrial Control of Chatter in Cold Rolling
,”
Iron and Steel Engineer
,
61
, November, pp.
17
26
.
4.
Nieb, J. R., and Nicolas, V. T., 1991, “Automated Monitoring and Control of Vibration and Chatter in Rolling Processes,” Iron and Steel Engineer, July, pp. 33–42.
5.
Collinson, C. D., and Morel, M., 1992, “Dynamic Shape Roll,” Light Metal Age, December, pp. 6–11.
6.
Roberts, W. L., 1988, Flat Processing of Steel, Marcel Dekker, New York, NY.
7.
Nussbaum, E., 1993, “Advances in Flat Products Processing Technology,” Light Metal Age, December, pp. 8–46.
8.
Nussbaum, E., 1994, “Aluminum Foil Processing Technology,” Light Metal Age, December, pp. 6–46.
9.
Ray
,
A. K.
,
Mishra
,
K. K.
,
Das
,
G.
, and
Chaudhary
,
P. N.
,
2000
, “
Life of Rolls in a Cold Rolling Mill in a Steel Plant—Operation Versus Manufacture
,”
Engineering Failure Analysis
,
7
, pp.
55
67
.
10.
Guo, R.-M., Urso, A. C., and Schunk, J. H., 1993, “Analysis of Chatter Vibration Phenomena of Rolling Mills Using Finite Element Methods,” Iron and Steel Engineer, January, pp. 29–39.
11.
Nessler, G. L., and Cory, J. F., 1993, “Identification of Chatter Sources in Cold Rolling Mills,” Iron and Steel Engineer, January, pp. 40–45.
12.
Xiong
,
S.
,
Liu
,
X.
,
Wang
,
G.
, and
Zhang
,
Q.
,
2000
, “
A Three-Dimensional Finite Element Simulation of the Vertical—Horizontal Rolling Process in the Width Reduction of Slab
,”
J. Mater. Process. Technol.
,
101
, pp.
146
51
.
13.
Johnson
,
R. E.
, and
Qi
,
Q.
,
1994
, “
Chatter Dynamics in Sheet Rolling
,”
Int. J. Mech. Sci.
,
36
(
7
), pp.
617
30
.
14.
Moon, F. C., 1998, Dynamics and Chaos in Manufacturing Processes, John Wiley & Sons, New York, NY.
15.
Yun
,
I.-S.
,
Ehmann
,
K. F.
, and
Wilson
,
W. R. D.
,
1998
, “
Chatter in the Strip Rolling Process, Part 1: Dynamic Model of Rolling
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
330
6
.
16.
Yun
,
I.-S.
,
Ehmann
,
K. F.
, and
Wilson
,
W. R. D.
,
1998
, “
Chatter in the Strip Rolling Process, Part 2: Dynamic Rolling Experiments
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
337
42
.
17.
Yun
,
I.-S.
,
Ehmann
,
K. F.
, and
Wilson
,
W. R. D.
,
1998
, “
Chatter in the Strip Rolling Process, Part 3: Chatter Model
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
343
48
.
18.
Lu
,
Y. X.
,
Lee
,
C. S.
,
Li
,
R. K. Y.
, and
Lai
,
J. K. L.
,
1999
, “
The Effect of Cold Rolling on the Dynamic Mechanical Responses of SiCp/Al Composites
,”
J. Mater. Process. Technol.
,
91
, pp.
215
8
.
19.
Hu
,
P.-H.
, and
Ehmann
,
K. F.
,
2000
, “
A Dynamic Model of the Rolling Process. Part I: Homogeneous Model
,”
Int. J. Mach. Tools Manuf.
,
40
, pp.
1
19
.
20.
Hu
,
P.-H.
, and
Ehmann
,
K. F.
,
2000
, “
A Dynamic Model of the Rolling Process. Part II: Homogeneous Model
,”
Int. J. Mach. Tools Manuf.
,
40
, pp.
21
31
.
21.
McConnell
,
C.
, and
Lenard
,
J. G.
,
2000
, “
Friction in Cold Rolling of a Low Carbon Steel With Lubricants
,”
J. Mater. Process. Technol.
,
99
, pp.
86
93
.
22.
Meehan
,
P. A.
,
2002
, “
Vibration Instability in Rolling Mills: Modeling and Experimental Results
,”
ASME J. Vibr. Acoust.
,
124
, pp.
221
8
.
23.
Young, C. W., 1989, Roark’s Formulas for Stress and Strain, 6th Edition, McGraw-Hill, New York, NY.
24.
Lin
,
Y.-J.
,
Suh
,
C. S.
, and
Noah
,
S. T.
,
2002
, “
Dynamic Characteristics of Sheet Rolling Instability
,”
International Journal of Structural Stability and Dynamics
,
2
(
3
), pp.
375
394
.
25.
Barber, J. R., 2001, Intermediate Mechanics of Materials, McGraw-Hill, New York, NY.
26.
Wanheim
,
T.
, and
Bay
,
N.
,
1978
, “
A Model for Friction in Metal Forming Processes
,”
CIRP Ann.
,
27
(
1
), pp.
189
94
.
27.
James, M. L., Smith, G. M., Wolford, J. C., and Whaley, P. W., 1994, Vibration of Mechanical and Structural Systems: With Microcomputer Applications, 2nd Edition, Harper Collins College Publishers, New York, NY.
You do not currently have access to this content.